[1] Aziz K, Settari A. Petroleum Reservoir Simulation. London: Applied Science Publishers, 1979 [2] Ewing R E, Lazarov R D, Lyons S L, Papavassiliou D V, Pasciak J, Qin G. Numerical well model for non-darcy flow through isotropic porous media. Comput Geosci, 1999, 3(3/4): 185-204 [3] Ruth D, Ma H. On the derivation of the Forchheimer equation by means of the averaging theorem. Transport in Porous Media, 1992, 7(3): 255-264 [4] Fabrie P. Regularity of the solution of Darcy-Forchheimer's equation. Nonlinear Anal Theory Methods Appl, 1989, 13(9): 1025-1049 [5] Girault V, Wheeler M F. Numerical discretization of a Darcy-Forchheimer model. Numer Math, 2008, 110(2): 161-198 [6] Lopez H, Molina B, Salas J J. Comparison between different numerical discretization for a Darcy-Forchheimer model. Electron Trans Numer Anal, 2009, 34: 187-203 [7] Pan H, Rui H X. Mixed element method for two-dimensional Darcy-Forchheimer model. J Sci Comput, 2012, 52: 563-587 [8] Pan H, Rui H X. A mixed element method for Darcy-Forchheimer incompressible miscible displacement problem. Comput Methods Appl Mech Engrg, 2013, 264: 1-11 [9] Rui H X, Pan H. A block-centered finite difference method for slightly compressible Darcy-Forchheimer flow in porous media. J Sci Comput, 2017, 73: 70-92 [10] Li X L, Rui H X. A fully conservative block-centered finite difference method for Darcy-Forchheimer incompressible miscible displacement problem. Numer Meth PDE, 2020, 36(1): 66-85 [11] Rui H X, Pan H. A block-centered finite difference method for the Darcy-Forchheimer model. SIAM J Numer Anal, 2012, 50(5): 2612-2631 [12] Liu W, Cui J T. A two-grid block-centered finite difference algorithm for nonlinear compressible Darcy-Forchheimer model in porous media. J Sci Comput, 2018, 74(3): 1786-1815 [13] Douglas Jr J, Paes-Leme P J, Giorgi T. Generalized Forchheimer flow in porous media//Boundary Value Problems for Partial Differential Equations and Applications. RMA Res Notes Appl Math, 29. Paris: Masson, 1993: 99-111 [14] Park E J. Mixed finite element method for generalized Forchheimer flow in porous media. Numer Meth PDE, 2005, 21(2): 213-228 [15] Douglas Jr J. Finite difference method for two-phase incompressible flow in porous media. SIAM J Numer Anal, 1983, 20(4): 681-696 [16] Douglas Jr J.Simulation of miscible displacement in porous media by a modified method of characteristic procedure//Numerical Analysis, Dundee, 1981. Lecture Notes in Mathematics, 912. Berlin: Springer-Verlag, 1982 [17] Ewing R E, Russell T F, Wheeler M F. Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics. Comput Methods Appl Mech Engrg, 1984, 47(1/2): 73-92 [18] Douglas Jr J, Yuan Y R.Numerical simulation of immiscible flow in porous media based on combining the method of characteristics with mixed finite element procedure//Numerical Simulation in Oil Recovery. New York: Springer-Berlag, 1986: 119-132 [19] Arbogast T, Wheeler M R. A charcteristics-mixed finite element methods for advection-dominated transport problems. SIAM J Numer Anal, 1995, 32(2): 404-424 [20] Sun T J, Yuan Y R. An approximation of incompressible miscible displacement in porous media by mixed finite element method and characteristics-mixed finite element method. J Comput Appl Math, 2009, 228(1): 391-411 [21] Yuan Y R.Theory and Application of Reservoir Numerical Simulation. Beijing: Science Press, 2013 [22] Ewing R E.The Mathematics of Reservior Simulation. Philadelphia: SIAM, 1983 [23] Shen P P, Liu M X, Tang L.Mathematical model of Petroleum Exploration and Development. Beijing: Science Press, 2002 [24] Raviart P A, Thomas J M.A mixed finite element method for 2-nd order elliptic problems in mathematical aspects of the finite element method//Lecture Notes in Mathematics, Vol 606. Berlin and New York: Springer, 1977: 292-315 [25] Nedelec J C. Mixed finite elements in $R^3$. Numer Math, 1980, 35(3): 315-341 [26] Brezzi R. On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers. RAIRO Anal Numer, 1974, 8(2): 129-151 [27] Russell T F. Time stepping along characteristics with incomplete iteration for a Galerkin approximation of miscible displacement in porous media. SIAM J Numer Anal, 1985, 22(5): 970-1013 [28] Yuan Y R, Song H L, Li C F, Sun T J. Block-centered upwind multistep difference method and convergence analysis for numerical simulation of oil reservoir. Math Method Appl Sci, 2019, 42(9): 3289-3304 [29] Yuan Y R, Yang Q, Li C F, Sun T J. Numerical method of mixed finite volume modified upwind fractional step difference for three-dimensional semiconductor device transient behavior problems. Acta Math Sci, 2017, 37B(1): 259-279 |