数学物理学报(英文版) ›› 2023, Vol. 43 ›› Issue (4): 1603-1617.doi: 10.1007/s10473-023-0410-2

• • 上一篇    下一篇

THE WELL-POSEDNESS OF FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS IN COMPLEX BANACH SPACES

Shangquan BU1, Gang CAI2,†   

  1. 1. Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China;
    2. School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, China
  • 收稿日期:2022-03-11 修回日期:2022-06-29 发布日期:2023-08-08
  • 通讯作者: †Gang CAI, E-mail: caigang-aaaa@163.com
  • 作者简介:Shangquan BU, E-mail: bushangquan@mail.tsinghua.edu.cn
  • 基金资助:
    * NSF of China (12171266, 12171062) and the NSF of Chongqing (CSTB2022NSCQ-JQX0004).

THE WELL-POSEDNESS OF FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS IN COMPLEX BANACH SPACES

Shangquan BU1, Gang CAI2,†   

  1. 1. Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China;
    2. School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, China
  • Received:2022-03-11 Revised:2022-06-29 Published:2023-08-08
  • Contact: †Gang CAI, E-mail: caigang-aaaa@163.com
  • About author:Shangquan BU, E-mail: bushangquan@mail.tsinghua.edu.cn
  • Supported by:
    * NSF of China (12171266, 12171062) and the NSF of Chongqing (CSTB2022NSCQ-JQX0004).

摘要: Let $X$ be a complex Banach space and let $B$ and $C$ be two closed linear operators on $X$ satisfying the condition $D(B)\subset D(C)$, and let $d\in L^1(\mathbb{R}_+)$ and $0 \leq \beta < \alpha\leq 2$. We characterize the well-posedness of the fractional integro-differential equations $D^\alpha u(t) + CD^\beta u(t)$ $= Bu(t) + \int_{-\infty}^t d(t-s)Bu(s){\rm d}s + f(t),\ (0\leq t\leq 2\pi)$ on periodic Lebesgue-Bochner spaces $L^p(\mathbb{T}; X)$ and periodic Besov spaces $B_{p,q}^s(\mathbb{T}; X)$.

关键词: Lebesgue-Bochner spaces, fractional integro-differential equations, multiplier, well-posedness

Abstract: Let $X$ be a complex Banach space and let $B$ and $C$ be two closed linear operators on $X$ satisfying the condition $D(B)\subset D(C)$, and let $d\in L^1(\mathbb{R}_+)$ and $0 \leq \beta < \alpha\leq 2$. We characterize the well-posedness of the fractional integro-differential equations $D^\alpha u(t) + CD^\beta u(t)$ $= Bu(t) + \int_{-\infty}^t d(t-s)Bu(s){\rm d}s + f(t),\ (0\leq t\leq 2\pi)$ on periodic Lebesgue-Bochner spaces $L^p(\mathbb{T}; X)$ and periodic Besov spaces $B_{p,q}^s(\mathbb{T}; X)$.

Key words: Lebesgue-Bochner spaces, fractional integro-differential equations, multiplier, well-posedness