[1] Allaire G. Shape Optimization by the Homogenization Method. Berlin:Springer, 2002 [2] Bai Y R, Migórski S, Zeng S D. A class of generalized mixed variational-hemivariational inequalities I:existence and uniqueness results. Comput Math Appl 2020, 79:2897-2911 [3] Barboteu M, Bartosz K, Han W, Janiczko T. Numerical analysis of a hyperbolic hemivariational inequality arising in dynamic contact. SIAM J Numer Anal, 2015, 53:527-550 [4] Barboteu M, Bartosz K, Han W. Numerical analysis of an evolutionary variational-hemivariational inequality with application in contact mechanics. Comput Methods Appl Mech Eng, 2017, 318:882-897 [5] Bartosz K, Sofonea M. The Rothe method for variational-hemivariational inequalities with applications to contact mechanics. SIAM J Math Anal, 2016, 48:861-883 [6] Braides A, Chiado-Piat V, Defranceschi A. Homogenization of almost periodic monotone operators. Ann Inst H Poincare, Anal Nonlinear, 1992, 9:399-432 [7] Cojocaru M C, Matei A. Well-posedness for a class of frictional contact models via mixed variational formulations. Nonlinear Anal, 2019, 47:127-141 [8] Dal Maso G. An Introduction to Γ-convergence. Boston, Basel, Berlin:Birkhäuser-Verlag, 1993 [9] Defranceschi A. An introduction to homogenization and G-convergence//School on Homogenization. Lecture notes of the courses held at ICTP, Trieste, September 6-17, 1993:85-133 [10] Denkowski Z, Migórski S, Papageorgiou N S. An Introduction to Nonlinear Analysis:Theory. Boston, Dordrecht, London, New York:Kluwer Academic/Plenum Publishers, 2003 [11] Fusco N, Moscariello G. On the homogenization of quasilinear divergence structure operators. Ann Mat Pura Appl, 1987, 146:1-13 [12] Han W, Sofonea M. Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity. Studies in Advanced Mathematics 30. Americal Mathematical Society, Providence, RI-International Press, Somerville, MA, 2002 [13] Han W. Numerical analysis of stationary variational-hemivariational inequalities with applications in contact mechanics. Math Mech Solids, 2018, 23:279-293 [14] Gasiński L, Ochal A, Shillor M, Variational-hemivariational approach to a quasistatic viscoelastic problem with normal compliance, friction and material damage. Z Angew Math Phys, 2015, 34:251-276 [15] Filippakis M, Gasiński L, Papageorgiou N S. On the existence of positive solutions for hemivariational inequalities driven by the p-Laplacian. J Global Optim, 2005, 31:173-189 [16] Gasiński L. Evolution hemivariational inequalities with hysteresis. Nonlinear Anal, 2004, 57:323-340 [17] Liu Z H, Migórski S, Ochal A. Homogenization of boundary hemivariational inequalities in linear elasticity. J Math Anal Appl, 2008, 340:1347-1361 [18] Liu Z H. Existence results for quasilinear parabolic hemivariational inequalities. J Differential Equations, 2008, 244:1395-1409 [19] Liu Z H, Motreanu D. A class of variational-hemivariational inequalities of elliptic type. Nonlinearity, 2010, 23:1741-1752 [20] Liu Z H, Motreanu D, Zeng S D. Generalized penalty and regularization method for differential variationalhemivariational inequalities. SIAM J Optim, 2021, 31:1158-1183 [21] Matei A. A mixed hemivariational-variational problem and applications. Comput Math Appl, 2019, 77:2989-3000 [22] Matei A. A variational approach via bipotentials for a class of frictional contact problems. Acta Appl Math, 2014, 134:45-59 [23] Matei A. An existence result for a mixed variational problem arising from Contact Mechanics. Nonlinear Anal, 2014, 20:74-81 [24] Matei A. Two abstract mixed variational problems and aplications in contact mechanics. Nonlinear Anal, 2015, 22:592-603 [25] Migórski S, Bai Y R, Zeng S D. A class of generalized mixed variational-hemivariational inequalities II:applications. Nonlinear Anal, 2019, 50:633-650 [26] Migórski S, Ochal A. A unified approach to dynamic contact problems in viscoelasticity. Journal of Elasticity, 2006, 83:247-276 [27] Migórski S, Ochal A, Sofonea M. Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems. Advances in Mechanics and Mathematics 26. New York:Springer, 2013 [28] Migórski S, Zeng S D. A class of differential hemivariational inequalities in Banach spaces. J Global Optim, 2018, 72:761-779 [29] Migórski S, Zeng S D. Hyperbolic hemivariational inequalities controlled by evolution equations with application to adhesive contact model. Nonlinear Anal, 2018, 43:121-143 [30] Naniewicz Z, Panagiotopoulos P D. Mathematical Theory of Hemivariational Inequalities and Applications. New York, Basel, Hong Kong:Marcel Dekker, Inc, 1995 [31] Nečas J. Direct Methods in the Theory of Elliptic Equations. Berlin, Heidelberg:Springer, 2012 [32] Panagiotopoulos P D. Nonconvex energy functions, hemivariational inequalities and substationary principles. Acta Mechanica, 1983, 42:160-183 [33] Panagiotopoulos P D. Inequality Problems in Mechanics and Applications. Boston:Birkhäuser, 1985 [34] Panagiotopoulos P D. Hemivariational Inequalities, Applications in Mechanics and Engineering. Berlin:Springer-Verlag, 1993 [35] Sofonea M, Matei A. Mathematical Models in Contact Mechanics. London Mathematical Society Lecture Notes. Cambridge University Press, 2012 [36] Sofonea M, Migórski S. Variational-Hemivariational Inequalities with Applications. Chapman & Hall/CRC, Monographs and Research Notes in Mathematics, Boca Raton, 2017 [37] Svanstedt N. G-convergence of parabolic operators. Nonlinear Anal, 1999, 36:807-842 [38] Zeng S D, Migórski S. A class of time-fractional hemivariational inequalities with application to frictional contact problem. Commun Nonlinear Sci, 2018, 56:34-48 [39] Zeng S D, Liu Z H, Migórski S. A class of fractional differential hemivariational inequalities with application to contact problem. Z Angew Math Phys, 2018, 69:1-23 [40] Zeng S D, Migórski S, Khan A A. Nonlinear quasi-hemivariational inequalities:existence and optimal control. SIAM J Control Optim, 2021, 59:1246-1274 [41] Zhikov V, Kozlov S, Oleinik O. Homogenization of Differential Operators and Integral Functionals. Berlin:Springer, 1995 |