[1] Aizenbud A, Gourevitch D. Schwartz functions on Nash manifolds. Int Math Res Not, 2008, 2008(5): Art rnm155 [2] Aizenbud A, Gourevitch D. Smooth transfer of Kloostermann integrals (the Archimedean case). American Journal of Mathematics, 2013, 135: 143-182 [3] Aizenbud A, Gourevitch D. The de Rham theorem and Shapiro lemma for Schwartz functions on Nash manifolds. Israel J Math, 2010, 177: 155-188 [4] Aizenbud A, Gourevitch D, Krötz B, Liu G. Hausdorffness for Lie algebra homology of Schwartz spaces and applications to the comparison conjecture. Math Zeit, 2016, 283: 979-992 [5] Aizenbud A, Gourevitch D, Krötz B, Liu G. Erratum to: Hausdorffness for Lie algebra homology of Schwartz spaces and applications to the comparison conjecture. Math Zeit, 2016, 283: 993-994 [6] Bochnak J, Coste M, Roy M F. Real Algebraic Geometry. Berlin: Springer, 1998 [7] Borel A, Wallach N. Continuous cohomology, discrete subgroups,representations of reductive groups. Annals of Mathematics Studies, 1980: No 94 [8] Casselman W. Canonical extensions of Harish-Chandra modules to representations of $G$. Canad J Math, 1989, 41: 385-438 [9] Casselman W, Hecht H, Miliɩiɣ D. Bruhat filtrations and Whittaker vectors for real groups//Doran R, Varadarajan V. Proceedings of Symposia in Pure Mathematics. Providence, RI: Amer Math Soc, 2000: 151-191 [10] Chen Y, Sun B. Schwartz homologies of representations of almost linear Nash groups. Journal of Functional Analysis, 2021, 280(7): 108817 [11] du Cloux F. Sur les représentations différentiables des groupes de Lie algébriques. Ann Sci Ecole Norm Sup,1991, 24(3): 257-318 [12] Hong J, Sun B. Generalized semi-invariant distributions on $p$-adic spaces. Math Ann, 2017, 367: 1727-1776 [13] Knapp A, Vogan D.Cohomological Induction and Unitary Representations. Princeton: Princeton University Press, 1995 [14] Shiota M. Nash Manifolds.Berlin: Springer-Verlag, 1987 [15] Shiota M.Nash Functions and Manifolds//Broglia F. Lectures in Real Geometry. Berlin: de Gruyter, 1996 [16] Sun B. Almost linear Nash groups. China Ann Math Ser B, 2015, 36: 355-400 [17] Sun B, Zhu C B. A general form of Gelfand-Kazhdan criterion. Manu Math, 2011, 136: 185-197 [18] Taylor J L.Notes on locally convex topological vector spaces. Lecture Notes, University of Utah, 1995 [19] Trèves F. Topological Vector Spaces, Distributions and Kernels. New York: Academic Press, 1967 |