摘要: Let be an -dimensional Randers space with scalar flag curvature. In this paper, we will introduce the definition of a weak Einstein manifold. We can prove that if is a weak Einstein manifold, then the flag curvature is constant.
引用本文
Jintang LI. RANDERS SPACES WITH SCALAR FLAG CURVATURE*[J]. 数学物理学报(英文版), 2023, 43(3): 994-1006.
Jintang LI. RANDERS SPACES WITH SCALAR FLAG CURVATURE*[J]. Acta mathematica scientia,Series B, 2023, 43(3): 994-1006.
[1] Akbar-Zadeh H.Sur les espaces de Finsler à courbures sectionnelles constantes. Acad Roy Belg Bull Cl Sci, 1988, 74(2): 281-322 [2] Bao D, Chern S S, Shen Z.An Introduction to Riemann-Finsler Geometry. New York: Springer-Verlag, 2000 [3] Berwald L.Über die n-dimensionalen Geometrien konstanter Krüummung, in denen die Geraden die küurzesten sind. Math Z, 1929, 30(3): 449-469 [4] Chen X, Mo X, Shen Z.On the flag curvature of Finsler metrics of scalar curvature. J London Math Soc, 2003, 68(3): 762-780 [5] Chern S S, Shen Z. Riemann-Finsler Geometry. Singapore: World Scientific, 2005 [6] Li J.Compact hypersurfaces in Randers space. Ann Sc Norm Super Pisa Cl Sci, 2020, 20(3): 1147-1167 [7] Matsumoto M.Foundations of Finsler Geometry and Special Fisler Spaces. Otsu: Kaiseisha Press, 1986 [8] Mo X, Shen Z.On negatively curved Finsler manifolds of scalar curvature. Cana J Bull, 2005, 48(1): 112-120 [9] Shen Z.Projectively flat Randers metrics of constant flag curvature. Math Ann, 2003, 325(1): 19-30 [10] Shen Z.Volume comparison and its applications in Riemann-Finsler geometry. Adv Math, 1997, 128(4): 306-328