[1] Bahri A, Bendersky M, Cohen F R, Gitler S. Decompositions of the polyhedral product functor with applications to moment-angle complexes and related spaces. Proc Natl Acad Sci USA, 2009, 106: 12241- 12244 [2] Bahri A, Bendersky M, Cohen F, Gitler S. The Polyhedral Product Functor: a method of computation for moment-angle complexes, arrangements and related spaces. Adv Math, 2010, 225: 1634-1668 [3] Bahri A, Bendersky M, Cohen F R, Gitler S. Cup products for the polyhedral product functor. Math Proc Camb Philos Soc, 2012, 153: 457-469 [4] Bahri A, Bendersky M, Cohen F R, Gitler S. Operations on polyhedral products and a new topological construction of infinite families of toric manifolds. Homol Homotopy Appl, 2015, 17(2): 137-160 [5] Baskakov I, Bukhshtaber V, Panov T. Algebras of cellular cochains, and torus actions. Russ Math Surv, 2004, 59: 562-563 [6] Bukhshtaber V M, Panov T E. Algebraic topology of manifolds defined by simple polytopes (Russian). Uspekhi Mat Nauk, 1998, 53(3): 195-196; English transl in: Russian Math Surveys, 1998, 53(3): 623-625 [7] Buchstaber V M, Panov T E. Torus actions and combinatorics of polytopes (Russian). Tr Mat Inst Steklova, 1999, 225: 96-131; English translation in: Proc Steklov Inst Math, 1999, 225(2): 87-120 [8] Buchstaber V M, Panov T E. Torus Actions and Their Applications in Topology and Combinatorics University Lecture Series, Vol 24. Providence, RI: Amer Math Soc, 2002 [9] Buchstaber V M, Panov T E. Toric Topology. Providence, RI: Amer Math Soc, 2015 [10] Cao X, Lü Z. Möbius transform, moment-angle complexes and Halperin-Carlsson conjecture. J Algebraic Combin, 2012, 35: 121-140 [11] Davis M W, Januszkiewicz T. Convex polytopes, Coxeter orbifolds and torus actions. Duke Math J, 1991, 62: 417-451 [12] Franz M. The cohomology rings of smooth toric varieties and quotients of moment-angle complexes. Geom Topol, 2021, 25(4): 2019-2144 [13] Franz M, Fu X. Cohomology of smooth toric varieties: naturality. arXiv:2104.03825v1 [14] Grbić J, Theriault S D. Homotopy type of the complement of a configuration of coordinate subspaces of codimension two. Usp Mat Nauk, 2004, 59(6): 203-204; translation in Russ Math Surv, 2004, 59(6): 1207-1209 [15] Grbić J, Theriault S. The homotopy type of the complement of a coordinate subspace arrangement. Topology, 2007, 46(4): 357-396 [16] Grbić J, Theriault S. The homotopy type of the polyhedral product for shifted complexes. Adv Math, 2013, 245: 690-715 [17] Lü Z, Panov T. Moment-angle complexes from simplicial posets. Cent Eur J Math, 2011, 9: 715-730 [18] Panov T E. On the cohomology of quotient spaces of moment-angle complexes (Russian). Uspekhi Mat Nauk, 2015, 70: 209-210; English translation: Russian Math Surveys, 2015, 70: 779-781 [19] Gerald J P. The homotopy groups of wedges of suspensions. American J Math, 1966, 88(3): 655-663 [20] Panov T, Ustinovsky Y. Complex-analytic structures on moment-angle manifolds. Mosc Math J, 2012, 12(1): 149-172 [21] Stanley R P. f-vectors and h-vectors of simplicial posets. J Pure Appl Algebra, 1991, 71: 319-331 [22] Yu L. A unifying view toward polyhedral products through panel structures. arXiv:2103.04281 [23] Yu L. A generalization of moment-angle manifolds with non-contractible orbit spaces. arXiv:2011.10366 [24] Zheng Q B. The cohomology algebra of polyhedral product spaces. J Pure Appl Algebra, 2016, 220(11): 3752-3776 |