[1] Allen M. A free boundary problem on three-dimensional cones. J Differential Equations, 2017, 263(12): 8481-8507 [2] Allen M, Lara H C. Free boundaries on two-dimensional cones. J Geom Anal, 2015, 25(3): 1547-1575 [3] Alt H W, Caffarelli L A, Friedman A. Variational problems with two phases and their free boundaries. Trans Amer Math Soc, 1984, 282(2): 431-461 [4] Ambrosio L. Calculus, heat flow and curvature-dimension bounds in metric measure spaces//Proceedings of the International Congress of Mathematicians-Rio de Janeiro 2018, Vol I: Plenary Lectures. Hackensack, NJ: World Sci Publ, 2018: 301-340 [5] Ambrosio L, Gigli N, Savaré G. Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces. Rev Mat Iberoam, 2013, 29(3): 969-996 [6] Ambrosio L, Gigli N, Savaré G. Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. Invent Math, 2014, 195(2): 289-391 [7] Ambrosio L, Gigli N, Savaré G. Metric measure spaces with Riemannian Ricci curvature bounded from below. Duke Math J, 2014, 163(7): 1405-1490 [8] Ambrosio L, Mondino A, Savaré G. On the Bakry-Emery condition, the gradient estimates and the localto-global property of RCD*(K, N) metric measure spaces. J Geom Anal, 2016, 26(1): 24-56 [9] Andersson J, Weiss G S. A parabolic free boundary problem with Bernoulli type condition on the free boundary. J Reine Angew Math, 2009, 627: 213-235 [10] Björn A, Björn J. Nonlinear Potential Theory on Metric Spaces. EMS Tracts in Mathematics, Vol 17. Zürich: European Mathematical Society, 2011 [11] Caffarelli L, Salsa S. A Geometric Approach to Free Boundary Problems. Grad Stud Math 68. Providence, RI: American Mathematical Society, 2005 [12] Caffarelli L, Lederman C, Wolanski N. Pointwise and viscosity solutions for the limit of a two phase parabolic singular perturbation problem. Indiana Univ Math J, 1997, 46(3): 719-740 [13] Caffarelli L, Vázquez J. A free-boundary problem for the heat equation arising in flame propagation. Trans Amer Math Soc, 1995, 347(2): 411-441 [14] Chan C K, Zhang H -C, Zhu X -P. One-phase free boundary problems on RCD metric measure space. available at: arXiv:2112.06962 [15] Cheeger J. Differentiability of Lipschitz functions on metric measure spaces. Geom Funct Anal, 1999, 9(3): 428-517 [16] Cheeger J, Colding T. On the structure of spaces with Ricci curvature bounded below I. J Differential Geom, 1997, 46: 406-480 [17] Cheeger J, Colding T. On the structure of spaces with Ricci curvature bounded below II, III. J Differential Geom, 2000, 54: 13-35; 37-74 [18] Erbar M, Sturm K T. Rigidity of cones with bounded Ricci curvature. J Eur Math Soc, 2021, 23(1): 219-235 [19] Gigli N. On the differential structure of metric measure spaces and applications. Mem Amer Math Soc, 2015, 236(1113): 1-91 [20] Gigli N, Han B X. Sobolev spaces on warped products. J Funct Anal, 2018, 275: 2059-2095 [21] Hajasz P, Koskela P. Sobolev met Poincaré. Mem Amer Math Soc, 2000, 145(688): 1-101 [22] Jiang R, Koskela P, Yang D. Isoperimetric inequality via Lipschitz regularity of Cheeger-harmonic functions. J Math Pures Appl, 2014, 101: 583-598 [23] Ketterer C. Cones over metric measure spaces and the maximal diameter theorem. J Math Pures Appl, 2015, 103(5): 1228-1275 [24] Lederman C, Wolanski N. A local monotonicity formula for an inhomogeneous singular perturbation problem and applications. Ann Mat Pura Appl, 2008, 187(2): 197-220 [25] Lott J, Villani C. Weak curvature conditions and functional inequalities. J Funct Anal, 2007, 245(1): 311-333 [26] Lott J, Villani C. Ricci curvature for metric-measure spaces via optimal transport. Ann Math, 2009, 169(3): 903-991 [27] Otsu Y, Shioya T. The Riemannian structure of Alexandrov spaces. J Differ Geom, 1994, 39: 629-658 [28] Petrunin A. Alexandrov meets Lott-Villani-Sturm. Münst J Math, 2011, 4: 53-64 [29] Shanmugalingam N. Newtonian spaces: an extension of Sobolev spaces to metric measure spaces. Rev Mat Iberoamericana, 2000, 16(2): 243-279 [30] Sturm K T. On the geometry of metric measure spaces, I. Acta Math, 2006, 196(1): 65-131 [31] Sturm K T. On the geometry of metric measure spaces, II. Acta Math, 2006, 196(1): 133-177 [32] Weiss G S. Partial regularity for a minimum problem with free boundary. J Geom Anal, 1999, 9(2): 317-326 [33] Weiss G S. A singular limit arising in combustion theory: fine properties of the free boundary. Calc Var Partial Differential Equations, 2003, 17(3): 311-340 [34] Zhang H C, Zhu X P. Ricci curvature on Alexandrov spaces and rigidity theorems. Comm Anal Geom, 2010, 18(3): 503-553 [35] Zhang H C, Zhu X P. Local Li-Yau’s estimates on RCD*(K, N) metric measure spaces. Calc Var PDEs, 2016, 55: Art 93 |