[1] Amar E, On the Lr Hodge theory in complete noncompact Riemannian manifolds. Math Z, 2017, 287:751-795; Corrections:Math Z, 2020, 296:877-879 [2] Amar E. The LIR method, Lr solutions of elliptic equation in a complete Riemannian manifold. J Geom Anal, 2019, 29:2565-2599 [3] Auscher P, Coulhon T, Duong X T, et al, Riesz transform on manifolds and heat kernel regularity. Ann Sci École Norm Sup, 2004, 37:911-957 [4] Borchers W, Sohr H, On the equations rotv=g and divu=f with zero boundary conditions. Hokkaido Math J, 1990, 19:67-87 [5] Chern S-S, Integral formulas for hypersurfaces in Euclidean space and their applications to uniqueness theorems. J Math Mech, 1959, 8:947-955 [6] Csató G, On an integral formula for differential forms and its applications on manifolds with boundary. Analysis (Berlin), 2013, 33:349-366 [7] Csató G, Dacorogna B, An identity involving exterior derivatives and applications to Gaffney inequality. Discrete Contin Dyn Syst Ser S, 2012, 5:531-544 [8] Csató G, Dacorogna B, Kneuss O. The pullback equation for differential forms. New York:Springer, 2012 [9] Csató G, Dacorogna B, Sil S, On the best constant in Gaffney inequality. J Funct Anal, 2018, 274:461-503 [10] Csató G, Kneuss O, Rajendran D, On the boundary conditions in estimating ∇ω by divω and curlω. Proc Roy Soc Edinburgh Sect A, 2019, 149:739-760 [11] Dodziuk J, Sobolev spaces of differential forms and de Rham-Hodge isomorphism. J Differential Geometry, 1981, 16:63-73 [12] Duff G F D, Spencer D C, Harmonic tensors on Riemannian manifolds with boundary. Ann of Math, 1952, 56:128-156 [13] Duvaut G, Lions J-L. Inequalities in mechanics and physics. Berlin-New York:Springer-Verlag, 1976 [14] Friedrichs K O, Differential forms on Riemannian manifolds. Comm Pure Appl Math, 1955, 8:551-590 [15] Gaffney M P, A special Stokes' theorem for complete manifolds. Ann of Math, 1954, 60:140-145 [16] Gallot S, Meyer D, Opérateur de courbure et laplacien des formes différentielles d'une variété riemannienne. J Math Pures Appl, 1975, 54:259-284 [17] Georgescu V, Some boundary value problems for differential forms on compact Riemannian manifolds. Ann Mat Pura Appl, 1979, 122:159-198 [18] Hebey E. Nonlinear analysis on manifolds:Sobolev spaces and inequalities. New York:American Mathematical Society, 1999 [19] Helmholtz H, Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. J Reine Angew Math, 1858, 55:25-55 [20] Hodge W V D. The theory and applications of harmonic integrals. Cambridge:Cambridge University Press, 1989 [21] Iwaniec T, Scott C, Stroffolini B, Nonlinear Hodge theory on manifolds with boundary. Ann Mat Pura Appl, 1999, 177:37-115 [22] Kodaira K, Harmonic fields in Riemannian manifolds (generalized potential theory). Ann of Math, 1949, 50:587-665 [23] Kozono H, Yanagisawa T, Lr-variational inequality for vector fields and the Helmholtz-Weyl decomposition in bounded domains. Indiana Univ Math J, 2009, 58:1853-1920 [24] Kozono H, Yanagisawa T, Generalized Lax-Milgram theorem in Banach spaces and its application to the elliptic system of boundary value problems. Manuscripta Math, 2013, 141:637-662 [25] Mitrea M, Dirichlet integrals and Gaffney-Friedrichs inequalities in convex domains. Forum Math, 2001, 13:531-567 [26] Morrey C B, Jr. A variational method in the theory of harmonic integrals, II. Amer J Math, 1956, 78:137-170 [27] Morrey C B, Jr. Multiple integrals in the calculus of variations. New York:Springer-Verlag, 1966 [28] Petersen P. Riemannian geometry. Third Edition. Cham:Springer, 2016 [29] Schwarz G. Hodge decomposition-a method for solving boundary value problems. Berlin:Springer-Verlag, 1995 [30] Scott C, Lp theory of differential forms on manifolds. Trans Amer Math Soc, 1995, 347:2075-2096 [31] Sil S. Regularity for elliptic systems of differential forms and applications. Calc Var Partial Differential Equations, 2017, 56(6):172 [32] Simader C G, Sohr H. A new approach to the Helmholtz decomposition and the Neumann problem in Lq-spaces for bounded and exterior domains//Galdi G P, Mathematical Problems Relating to the Navier-Stokes Equation. Ser Adv Math Appl Sci, World Sci Publ, River Edge, NJ, 1992, 11:1-35 [33] von Wahl W, Estimating ∇u by div u and curl u. Math Methods Appl Sci, 1992, 15:123-143 [34] Weyl H, The method of orthogonal projection in potential theory. Duke Math J, 1940, 7:411-444 |