[1] Bochner S. Vector fields and Ricci curvature. Bull Amer Math Soc, 1946, 52: 776--797
[2] Bochner S. Curvature in Hermitian metric. Bull Amer Math Soc, 1947, 53: 179--195
[3] Yano K, Bochner S. Curvature and Betti Numbers. Princeton, New Jersey: Princeton University Press, 1953
[4] Wu H. The Bochner Technique in Differential Geometry. London, Paris: Harwood Academic Publishers, 1988
[5] Morrow J, Kodaira K. Complex Manifold. New York: Holt, Rinehart and Winston, Inc, 1971
[6] Bao D, Chern S S, Shen Z. An Introducetion to Riemann-Finsler Geometry. New York: Spring-Verlag, 2000
[7] Chern S S. Finsler geometry is just Riemannian geometry without the quadratic restriction. AMS Notices, 1996, 43(9): 959--963
[8] Abate M, Patrizio G. Finsler Metric - A Global Approach. Lecture Notes in Math, Vol 1591. Berlin: Spring-Verlag, 1994
[9] Zhong T D, Zhong C P. Bochner technique on real Finsler manifolds. Acta Math Sci, 2003, 23B(2): 165--177
[10] Zhong C P. Hodge-Laplace operators on complex Finsler manifolds
[D]. Xiamen University, 2003
[11] Aikou T. On complex Finsler manifolds. Rep Fac Sci, Kagoshima Univ (Math, Phys & Chem), 1991, 24: 9--25
[12] Bland J, Kalka M. Variations of holomorphic curvature for Kähler Finsler metrics. Cont Math, 1996, 196: 121--132
[13] Zhong C P, Zhong T D. Hodge-Laplace operator on complex Finsler manifolds. Advances in Mathematics (in Chinese), 2006, 35(4): 415--426
[14] Zhong C P, Zhong T D. Horizontal $\bar{\partial}$-Laplacian on complex Finsler manifolds. Science in China, Ser A, 2005, 48(Supp): 377--391
[15] Zhong C P, Zhong T D. Hodge decomposition theorem on strongly Kähler Finsler manifolds. Science in China, Ser A, 2006, 49(11): 1696--1714
[16] Kobayashi S. Complex Finsler vector bundles. Cont Math, Amer Math Soc, 1996, 196: 145--153
[17] Aronszajn N. A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order. J Math Pures Appl, 1957, 36: 235--249
[18] Chen B, Shen Y. Kähler Finsler metrics are actually strongly Kähler. Chin Ann Math, Ser B, 2009, 30(2): 173--178
|