[1] Adhikari D, Cao C, Wu J. Global regularity results for the 2D Boussinesq equations with vertical dissipation. Journal of Differential Equations, 2010, 249:1078-1088 [2] Adhikari D, Cao C, Wu J. Global regularity results for the 2D Boussinesq equations with vertical dissipation. Journal of Differential Equations, 2011, 251:1637-1655 [3] Brézis H, Gallouet T. Nonlinear Schrödinger evolution equations. Nonlinear Anal, 1980, 4(4):677-681 [4] Brézis H, Wainger S. A note on limiting cases of Sobolev embeddings and convolution inequalities. Comm Partial Differential Equations, 1980, 5(7):773-789 [5] Cannon J R, DiBenedetto E. The initial value problem for the Boussinesq equations with data in Lp//Approximation Methods for Navier-Stokes Problems. Proc Sympos, Univ Paderborn, Paderborn, 1979; Lecture Notes in Math, Vol 771. Berlin:Springer, 1980:129-144 [6] Cao C, Farhat A, Titi E S. Global well-posedness of an inviscid three-dimensional pseudo-Hasegawa-Mima model. Comm Math Phys, 2013, 319:195-229 [7] Cao C, Li J, Titi E S. Global well-posedness for the 3D primitive equations with only horizontal viscosity and diffusion. Communications in Pure and Applied Mathematics, 2016, 69(8):1492-1531 [8] Cao C, Li J, Titi E S. Local and Global Well-Posedness of Strong Solutions to the 3D Primitive Equations with Vertical Eddy Diffusivity. Archive for Rational Mechanics and Analysis, 2014, 214(1):35-76 [9] Cao C, Wu J. Global regularity for the two-dimensional anisotropic Boussinesq equations with vertical dissipation. Arch Rational Mech Anal, 2013, 208:985-1004 [10] Chae D. Global regularity for the 2D Boussinesq equations with partial viscosity terms. Adv Math, 2006, 203:497-513 [11] Chen C, Liu J. Global well-posedness of 2D nonlinear Boussinesq equations with mixed partial viscosity and thermal diffusivity. Mathematical Methods in the Applied Sciences, 2017 [12] Constantin P, Foias C. Navier-Stokes Equations, Chicago Lectures in Mathematics. Chicago, IL:University of Chicago Press, 1988 [13] Danchin R, Paicu M. Les théorèmes de Leray et de Fujita-Kato pour le système de Boussinesq partiellement visqueux. Bull Soc Math France, 2008, 136:261-309 [14] Danchin R, Paicu M. Global existence results for the anisotropic Boussinesq system in dimension two. Math Models Methods Appl Sci, 2011, 21:421-457 [15] Dong B, Sadek G, Chen Z. On the regularity criteria of the 3D Navier-Stokes equations in critical spaces. Acta Math Sci, 2011, 31B(2):591-600 [16] Foias C, Manley O, Temam R. Attractors for the Bénard problem:existence and physical bounds on their fractal dimension. Nonlinear Analysis, Theory, Methods and Applications, 1987, 11:939-967 [17] Hmidi T, Keraani S. On the global well-posedness of the two-dimensional Boussinesq system with a zero diffusivity. Adv Differential Equations, 2007, 12:461-480 [18] Hou T, Li C. Global well-posedness of the viscous Boussinesq equations. Discrete Contin Dyn Sys, 2005, 12:1-12 [19] Hu W, Kukavica I, Ziane M. On the regularity for the Boussinesq equations in a bounded domain. J Math Phys, 2013, 54(8):081507, 10 pp [20] Lai M, Pan R, Zhao K. Initial boundary value problem for two-dimensional viscous Boussinesq equations. Arch Ration Mech Anal, 2011, 199:739-760 [21] Larios A, Lunasin E, Titi E S. Global well-posedness for the 2D Boussinesq system with anisotropic viscosity and without heat diffusion. J Differential Equations, 2013, 255:2636-2654 [22] Li J, Titi E S. The 2D Boussinesq equations with vertical viscosity and vertical diffusivity. Arch Rational Mech Anal, 2016, 220:983-1001 [23] Lieb E H, Loss M. Analysis Second edition., Graduate Studies in Mathematics, 14. Providence, RI:American Mathematical Society, 2001 [24] Majda A J. Introduction to PDEs and Waves for the Atmosphere and Ocean. Courant Lecture Notes in Mathematics, Vol 9. AMS/CIMS, 2003 [25] Majda A J, Bertozzi A L. Vorticity and Incompressible Flow. Cambridge:Cambridge University Press, 2001 [26] Pedlosky J. Geophysical Fluid Dynamics. New York:Spring, 1987 [27] Temam R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Scond Ed. Appl Math Sci, Vol 68. New York:Springer-Verlag, 1997 [28] Vallis G K. Atmospheric and Oceanic Fluid Dynamics. Cambridge Univ Press, 2006 [29] Ye Z. A note on global well-posedness of solutions to Boussinesq equations with fractional dissipation. Acta Math Sci, 2015, 35B(1):112-120 |