[1] Zhao T H, Wang M K, Zhang W, et al. Quadratic transformation inequalities for Gaussian hypergeometric function. J Inequal Appl, 2018, 2018:251 [2] Wang M K, Chu Y M. Landen inequalities for a class of hypergeometric functions with applications. Math Inequal Appl, 2018, 21:521-537 [3] Wang M K, Chu Y M, Jiang Y P. Ramanujan's cubic transformation inequalities for zero-balanced hypergeometric functions. Rocky Mountain J Math, 2016, 46:679-691 [4] Wang M K, Chu Y M. Refinements of transformation inequalities for zero-balanced hypergeometric functions. Acta Mathematica Scientia, 2017, 37B:607-622 [5] Wang M K, Chu Y M, Zhang W. Monotonicity and inequalities involving zero-balanced hypergeometric function. Math Inequal Appl, 2019, 22:601-617 [6] Abramowitz M, Stegun I A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards, Applied Mathematics Series 55. New York and Washington:Dover Publications, 1972 [7] Anderson G D, Vamanamurthy M K, Vuorinen M. Conformal Invariants, Inequalities, and Quasiconformal Maps. New York:Wiley, 1997 [8] Carlson B C, Guatafson J L. Asymptotic expansion of the first elliptic integral. SIAM J Math Anal, 1985, 16:1072-1092 [9] Borwein J M, Borwein P B. Pi and the AGM. New York:John Wiley and Sons, 1987 [10] Vamanamurthy M K, Vuorinen M. Inequalities for means. J Math Anal Appl, 1994, 183:155-166 [11] Qiu S L, Vamanamurthy M K, Vuorinen M. Some inequalities for the growth of elliptic integrals. SIAM J Math Anal, 1998, 29:1224-1237 [12] Alzer H, Qiu S L. Monotonicity theorems and inequalities for the complete elliptic integrals. J Comput Appl Math, 2004, 172:289-312 [13] Chu Y M, Qiu Y F, Wang M K. Hölder mean inequalities for the complete elliptic integrals. Integral Transforms Spec Funct, 2012, 23:521-527 [14] Yang Z H, Song Y Q, Chu Y M. Sharp bounds for the arithmetic-geometric mean. J Inequal Appl, 2014, 2014:192 [15] Yang Z H, Tian J. Sharp inequalities for the generalized elliptic integrals of the first kind. Ramanujan J, 2019, 48:91-116 [16] Wang M K, Zhang W, Chu Y M. Monotonicity, convexity and inequalities involving the generalized elliptic integrals. Acta Mathematica Scientia, 2019, 39B(5):1440-1450 [17] Yang Z H, Qian W M, Chu Y M. Monotonicity properties and bounds involving the complete elliptic integrals of the first kind. Math Inequal Appl, 2018, 21:1185-1199 [18] Yang Z H, Chu Y M, Zhang W. High accuracy asymptotic bounds for the complete elliptic integral of the second kind. Appl Math Comput, 2019, 348:552-564 [19] Yang Z H, Tian J F, Zhu Y R. A rational approximation for the complete elliptic integral of the first kind. Math, 2020, 8:635 [20] Yang Z H, Qian W M, Zhang W, et al. Notes on the complete elliptic integral of the first kind. Math Inequal Appl, 2020, 23:77-93 [21] He Z Y, Wang M K, Jiang Y P, et al. Bounds for the perimeter of an ellipse in terms of power means. J Math Inequal, 2020, 14:887-899 [22] Wang M K, He Z Y, Chu Y M. Sharp power mean inequalities for the generalized elliptic integral of the first kind. Comput Methods Funct Theory, 2020, 20:111-124 [23] Qian W M, He Z Y, Chu Y M. Approximation for the complete elliptic integral of the first kind. Rev R Acad Cienc Exactas Fís Nat Ser A Mat RACSAM, 2020, 114:57 [24] Wang J L, Qian W M, He Z Y, et al. On approximating the Toader mean by other bivariate means. J Funct Spaces, 2019, 2019:Art ID 6082413 [25] Qian W M, Wang M K, Xu H Z, et al. Approximations for the complete elliptic integral of the second kind. Rev R Acad Cienc Exactas Fís Nat Ser A Mat RACSAM, 2021, 115:88 [26] Zhao T H, Wang M K, Chu Y M. Monotonicity and convexity involving generalized elliptic integral of the first kind. Rev R Acad Cienc Exactas Fís Nat Ser A Mat RACSAM, 2021, 115:46 [27] Huang X F, Wang M K, Shao H, et al. Monotonicity properties and bounds for the complete p-elliptic integrals. AIMS Math, 2020, 5:7071-7086 [28] Widder D V. The Laplace Transform. Princeton:Princeton University Press, 1946 [29] Anderson G D, Vamanamurthy M K, Vuorinen M. Functional inequalities for complete elliptic integrals and their ratios. SIAM J Math Anal, 1990, 21:536-549 [30] Anderson G D, Barnard R W, Richards K C, et al. Inequalities for zero-balanced hypergeometric functions. Trans Amer Math Soc, 1995, 347:1713-1723 [31] Anderson G D, Vamanamurthy M K, Vuorinen M. Functional inequalities for hypergeometric functions and complete elliptic integrals. SIAM J Math Anal, 1992, 23:512-524 [32] Yang Z H. Sharp approximations for the complete elliptic integrals of the second kind by one-parameter means. J Math Anal Appl, 2018, 467:446-461 [33] Richards K C. A note on inequalities for the ratio of zero-balanced hypergeometric functions. Proc Amer Math Soc Ser B, 2019, 6:15-20 [34] Yang Z H, Tian J F. Convexity and monotonicity for elliptic integrals of the first kind and applications. Appl Anal Discrete Math, 2019, 13:240-260 [35] Wang M K, Chu H H, Li Y M, et al. Positive answers to three conjectures on the convexity of the complete elliptic integrals of the first kind. Appl Anal Discrete Math, 2020, 14:255-271 [36] Yang Z H, Tian J F, Wang M K. A positive answer to Bhatia-Li conjecture on the monotonicity for a newmean in its parameter. Rev R Acad Cienc Exactas Fís Nat Ser A Mat RACSAM, 2020, 114:126 [37] Yang Z H, Qian W M, Chu Y M, et al. On rational bounds for the gamma function. J Inequal Appl, 2017, 2017:210 [38] Yang Z H, Tian J. Monotonicity and sharp inequalities related to gamma function. J Math Inequal, 2018, 12:1-22 [39] Qiu S L, Vamanamurthy M K. Sharp estimates for complete elliptic integrals. SIAM J Math Anal, 1996, 27:823-834 [40] Zhao T H, He Z Y, Chu Y M. On some refinements for inequalities involving zero-balanced hypergeometric function. AIMS Math, 2020, 5:6479-6495 [41] Alzer H, Richards K. Inequalities for the ratio of complete elliptic integrals. Proc Amer Math Soc, 2017, 145:1661-1670 [42] Anderson G D, Vamanamurthy M K. Rotation of plane quasiconformal mappings. Tôhoku Math J, 1971, 23:605-620 [43] Lehto O, Virtanen K I. Quasiconformal Mappings in the Plane. Berlin:Springer-Verlag, 1973 [44] Zhao T H, Chu Y M, Wang H. Logarithmically complete monotonicity properties relating to the Gamma function. Abstr Appl Anal, 2011, 2011:Art ID 896483 [45] Yang Z H, Tian J F, Ha M H. A new asymptotic expansion of a ratio of two gamma functions and complete monotonicity for its remainder. Proc Amer Math Soc, 2020, 148:2163-2178 [46] Yang Z H, Tian J F. A class of completely mixed monotonic functions involving the gamma function with applications. Proc Amer Math Soc, 2018, 146:4707-4721 [47] Rosenbaum R A. Subadditive functions. Duke Math J, 1950, 17:227-242 [48] Petroviić M. Sur une iequation fonctionnelle. Publ Math Univ Belgrade, 1932, 1:149-156 |