[1] Alessandrini L, Bassanelli G. Compact p-Kähler manifolds. Geom Dedicata, 1991, 38:199-210 [2] Angella D, Kasuya H. Bott-Chern cohomology of solvmanifolds. Ann Global Anal Geom, 2017, 52:363-411 [3] Angella D, Kasuya H. Cohomologies of deformations of solvmanifolds and closedness of some properties. North-West Eur J Math, 2017, 3:75-105 [4] Angella D, Suwa T, Tardini N, Tomassini A. Note on Dolbeault cohomology and Hodge structures up to bimeromorphisms. Complex Manifolds, 2020, 7(1):194-214 [5] Angella D, Tardini N. Quantitative and qualitative cohomological properties for non-Kähler manifolds. Proc Amer Math Soc, 2017, 145:273-285 [6] Angella D, Tomassini A. On the $\partial\bar{\partial}$-lemma and Bott-Chern cohomology. Invent Math, 2013, 192(3):71-81 [7] Deligne P, Griffiths P, Morgan J, Sullivan D. Real homotopy theory of Kähler manifolds. Invent Math, 1975, 29(3):245-274 [8] Friedman R. The $\partial\bar{\partial}$-lemma for general Clemens manifolds. Pure Appl Math Q, 2019, 15(4):1001-1028 [9] Fujiki A. Closedness of the Douady spaces of compact Kähler spaces. Publ Res Inst Math Sci, 1978, 14:1-52 [10] Kasuya H. Hodge symmetry and decomposition on non-Kähler solvmanifolds. J Geom Phys, 2014, 76:61-65 [11] Meng L X. Leray-Hirsch theorem and blow-up formula for Dolbeault cohomology. Ann Mat Pura Appl (4), 2020, 199(5):1997-2014 [12] Meng L X. The heredity and bimeromorphic invariance of the $\partial\bar{\partial}$-lemma property. C R Math Acad Sci Paris, 2021, 359:645-650 [13] Rao S, Yang S, Yang X D. Dolbeault cohomologies of blowing up complex manifolds. J Math Pures Appl (9), 2019, 130:68-92 [14] Stelzig J. Double complexes and Hodge stuctures as vector bundles[D]. Mänster:Westfälischen Wilhelms-Universität Münster, 2018. https://d-nb.info/1165650959/34 [15] Stelzig J. The double complex of a blow-up. Int Math Res Not IMRN, 2021(14):10731-10744 [16] Stelzig J. On the structure of double complexes. J Lond Math Soc (2), 2021, 104(2):956-988 [17] Stelzig J. Private communications. May, 2019 [18] Voisin C. Hodge Theory and Complex Algebraic Geometry. Vol I. Cambridge Stud Adv Math 76. Cambridge:Cambridge University Press, 2003 [19] Wu C C. On the geometry of superstrings with torsions[D]. Massachusetts:Harvard University, 2006 [20] Yang S, Yang X D. Bott-Chern blow-up formula and bimeromorphic invariance of the $\partial\bar{\partial}$-Lemma for threefolds. Trans Amer Math Soc, 2020, 373(12):8885-8909 |