数学物理学报(英文版) ›› 2021, Vol. 41 ›› Issue (6): 1938-1948.doi: 10.1007/s10473-021-0610-6

• 论文 • 上一篇    下一篇

LAPLACE TRANSFORMS FOR ANALYTIC FUNCTIONS IN TUBULAR DOMAINS

邓冠铁, 付倩, 曹辉   

  1. Guantie DENG, Qian FU, Hui CAO
  • 收稿日期:2021-03-22 修回日期:2021-09-16 出版日期:2021-12-25 发布日期:2021-12-27
  • 通讯作者: Qian FU,E-mail:fqian19@126.com E-mail:fqian19@126.com
  • 作者简介:Guantie DENG,E-mail:denggt@bnu.edu.cn;Hui CAO,E-mail:18166038936@163.com
  • 基金资助:
    This work was partially supported by NSFC (11971045, 12071035 and 11971063).

LAPLACE TRANSFORMS FOR ANALYTIC FUNCTIONS IN TUBULAR DOMAINS

Guantie DENG, Qian FU, Hui CAO   

  1. Guantie DENG, Qian FU, Hui CAO
  • Received:2021-03-22 Revised:2021-09-16 Online:2021-12-25 Published:2021-12-27
  • Supported by:
    This work was partially supported by NSFC (11971045, 12071035 and 11971063).

摘要: Assume that $ 0< p<\infty $ and that $B$ is a connected nonempty open set in $\mathbb{R}^n$, and that $A^{p}(B)$ is the vector space of all holomorphic functions $F$ in the tubular domains $\mathbb{R}^n+{\rm i}B$ such that for any compact set $ K \subset B,$ $$ \|y\mapsto \|x\mapsto F(x+{\rm i}y)\|_{L^p(\mathbb{R}^n)}\|_{L(K)}<\infty, $$ so $A^p(B)$ is a Fréchet space with the Heine-Borel property, its topology is induced by a complete invariant metric, is not locally bounded, and hence is not normal. Furthermore, if $1\leq p\leq 2$, then the element $F$ of $A^{p}(B)$ can be written as a Laplace transform of some function $f\in L(\mathbb{R}^n)$.

关键词: Laplace transforms, Fourier transform, tubular domain, regular cone

Abstract: Assume that $ 0< p<\infty $ and that $B$ is a connected nonempty open set in $\mathbb{R}^n$, and that $A^{p}(B)$ is the vector space of all holomorphic functions $F$ in the tubular domains $\mathbb{R}^n+{\rm i}B$ such that for any compact set $ K \subset B,$ $$ \|y\mapsto \|x\mapsto F(x+{\rm i}y)\|_{L^p(\mathbb{R}^n)}\|_{L(K)}<\infty, $$ so $A^p(B)$ is a Fréchet space with the Heine-Borel property, its topology is induced by a complete invariant metric, is not locally bounded, and hence is not normal. Furthermore, if $1\leq p\leq 2$, then the element $F$ of $A^{p}(B)$ can be written as a Laplace transform of some function $f\in L(\mathbb{R}^n)$.

Key words: Laplace transforms, Fourier transform, tubular domain, regular cone

中图分类号: 

  • 42B30