[1] Jones V F R. Subfactors and knots. Providence, Rhode Island:American Mathematical Society, 1991 [2] Szlachányi K, Vecsernyés P. Quantum symmetry and braid group statistics in G-spin models. Communications in Mathematical Physics, 1993, 156(1):127-168 [3] Kramers H A, Wannier G H. Statistics of the two-dimensional ferromagnet. Part I. Physical Review, 1941, 60:252-262 [4] Nill F, Szlachányi K. Quantum chains of Hopf algebras with quantum double cosymmetry. Communications in Mathematical Physics, 1997, 187(1):159-200 [5] Schomerus V. Construction of field algebras with quantum symmetry from local observables. Communications in Mathematical Physics, 1995, 169(1):193-236 [6] Xin Q L, Jiang L N. Symmetric structure of field algebra of G-spin models determined by a normal subgroup. Journal of Mathematical Physics, 2014, 55(9):091703 [7] Kassel C. Quantum groups. New York:Springer, 1995 [8] Blanchard E. On finiteness of the N-dimensional Hopf C*-algebras. Operator theoretical methods (Timisoara, 1998). Theta Found, 2000:39-46 [9] Abe E. Hopf algebras. Cambridge:Cambridge University Press, 1980 [10] Sweedler M E. Hopf algebras. New York:W A BENJAMIN, 1969 [11] Dǎscǎlescu S, Nǎstǎsescu C, Raianu Ş. Hopf algebras:an introduction. CRC Press, 2000 [12] Montgomery S. Hopf algebras and their actions on rings. American Mathematical Society, 1993 [13] Vaes S, Van Daele A. Hopf C*-algebras. Proceedings of the London Mathematical Society, 2001, 82(3):337-384 [14] Ng C K. Duality of Hopf C*-algebras. International Journal of Mathematics, 2002, 13(9):1009-1025 [15] Ng C K. Coactions and crossed products of Hopf C*-algebras. Proceedings of the London Mathematical Society, 1996, 72(3):638-656 [16] Van Daele A. The Haar measure on finite quantum groups. Proceedings of the American Mathematical Society, 1997, 125(12):3489-3500 [17] Quan X C. Haar measures on Hopf C*-algebras. Acta Applicandae Mathematicae, 1993, 31(1):75-85 [18] Drabant B, Van Daele A. Pairing and quantum double of multiplier Hopf algebras. Algebras and Representation Theory, 2001, 4(2):109-132 [19] Delvaux L, Van Daele A. The Drinfel'd double of multiplier Hopf algebras. Journal of Algebra, 2004, 272(1):273-291 [20] Murphy G J. C*-algebras and operator theory. New York:Academic Press, 1990 [21] Takesaki M. Theory of operator algebra I. Berlin, Heidelberg, New York:Springer-Verlag, 2002 [22] Wei X M, Jiang L N, Xin Q L. The structure of the observable algebra determined by a Hopf *-subalgebra in Hopf spin models. Submitted to Acta Mathematica Sinica, English Series [23] Li B R. Introduction to operator algebras. Singapore:World Scientific, 1992(in Chinese) [24] Delvaux L, Van Daele A. The Drinfel'd double versus the Heisenberg double for an algebraic quantum group. Journal of Pure and Applied Algebra, 2004, 190(1/3):59-84 [25] Yang T, Zhou X, Chen J Z. Heisenberg double as braided commutative Yetter-Drinfel'd module algebra over Drinfel'd double in multiplier Hopf algebra case. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2017, 87(1):23-38 [26] Vaes S. The unitary implementation of a locally compact quantum group action. Journal of Functional Analysis, 2001, 180(2):426-480 [27] Taipe F. Quantum transformation groupoids:An algebraic and analytical approach[D]. Normandie:Université de Caen Normandie, 2018 |