[1] |
Araki H. Relative entropy of states of von Neumann algebras. Publ RIMS, 1976, 11:809-833
|
[2] |
Araki H. Relative entropy of states of von Neumann algebras Ⅱ. Publ RIMS, 1977, 13:173-192
|
[3] |
Bennett C, Sharpley R. Interpolation of Operators. Academic Press Inc, 1988
|
[4] |
Cipriani F. Dirichlet forms on noncommutative spaces//Quantum Potential Theory. Lecture Notes in Mathematics 1954. Springer, 2008:161-276
|
[5] |
DiPerna R, Lions P L. On the Fokker-Planck-Boltzmann equation. Commun Math Phys, 1988, 120:1-23
|
[6] |
DiPerna R, Lions P L. On the Cauchy problem for Boltzmann equations:global existence and weak stability. Ann Math, 1989, 130:321-366
|
[7] |
Dodds P G, Dodds T K-Y, de Pagter B. Non-commutative Banach function spaces. Math Z, 1989, 201:583-597
|
[8] |
Dodds P G, Dodds T K-Y, de Pagter B. Fully symmetric operator spaces. Integral Equations and Operator Theory, 1992, 15:942-972
|
[9] |
Fack T, Kosaki H. Generalized s-numbers of τ-measurable operators. Pac J Math, 1986, 123:269-300
|
[10] |
Fagnola F, Umanita V. Generators of KMS symmetric Markov semigroups on B(H) Symmetry and Quantum Detailed Balance. Commun Math Phys, 2010, 298:523-547
|
[11] |
Glauber R J. Time-dependent statistics for the Ising model. J Math Physics, 1963, 4:294-307
|
[12] |
Goldstein S. Conditional expectation and stochastic integrals in non-commutative Lp spaces. Math Proc Camb Phil Soc, 1991, 110:365-383
|
[13] |
Goldstein S, Lindsay J M. KMS-symmetric Markov semigroups. Math Z, 1995, 219:591-608
|
[14] |
Goldstein S, Lindsay J M. Markov semigroups KMS-symmetric for a weight. Math Ann, 1999, 313:39-67
|
[15] |
Haagerup U. Operator-valued weights in von Neumann algebras, Ⅱ. J Funct Anal, 1979, 33:339-361
|
[16] |
Haagerup U, Junge M, Xu Q. A reduction method for noncommutative Lp-spaces and applications. Trans Amer Math Soc, 2010, 362:2125-2165
|
[17] |
Johnson W B, Lindenstrauss J, ed. Handbook of the Geometry of Banach Spaces, vol 2. Elsevier Science, 2003
|
[18] |
Kadison R V, Ringrose J R. Fundamentals of the Operator Theory, vol Ⅱ. Advanced Theory. Graduate Studies in Mathematics, vol 16. American Mathematical Society, 1997
|
[19] |
Kosaki H. Applications of complex interpolation method to a von Neumann algebra (Non-commutative Lp-spaces). J Funct Anal, 1984, 56:29-78
|
[20] |
Labuschagne L E. A crossed product approach to Orlicz spaces. Proc London Math Soc, 2013, 107:965-1003
|
[21] |
Labuschagne L E, Majewski W A. Maps on non-commutative Orlicz spaces. Illinois J Math, 2011, 55:1053-1081
|
[22] |
Labuschagne L E, Majewski W A. Quantum dynamics on Orlicz spaces. arXiv:1605.01210v1[math-ph]
|
[23] |
Labuschagne L E, Majewski W A. Integral and differential structures for quantum field theory. arXiv:1702.00665[math-ph]
|
[24] |
Majewski W A. The detailed balance condition in quantum statistical mechanics. J Math Phys, 1984, 25:614-616
|
[25] |
Majewski W A. Dynamical semigroups in the algebraic formulation of statistical mechanics. Fortsch Phys, 1984, 32:89
|
[26] |
Majewski W A, Labuschagne L E. On applications of Orlicz spaces to Statistical Physics. Ann H Poincare, (2014, 15:1197-1221
|
[27] |
Majewski W A, Labuschagne L E. Why are Orlicz spaces useful for Statistical Physics?//Daniel Alpay, et al, Eds. Noncommutative Analysis, Operator Theory and Applications. Linear Operators and Linear Systems Vol 252. Birkhauser-Basel, 2016
|
[28] |
Majewski W A, Labuschagne L E. On Entropy for general quantum systems. Adv Theor Math Phys, to appear (See also arXiv:1804.05579[math-ph])
|
[29] |
Majewski W A, Streater R F. The detailed balance condition and quantum dynamical maps. J Phys A:Math Gen, 1998, 31:7981-7995
|
[30] |
Nelson E. Notes on non-commutative integration. J Funct Anal, 1974, 15:103
|
[31] |
Paulsen V. Completely Bounded Maps and Operator Algebras. Cambridge University Press, 2002
|
[32] |
Pedersen G K, Takesaki M. The Radon-Nikodym theorem for von Neumann algebras. Acta Mathematica, 1973, 130:53-87
|
[33] |
Pistone G, Sempi C. An infinite-dimensional geometric structure on the space of all the probability measures equivalent to a given one. The Annals of Statistics, 1995, 23:1543-1561
|
[34] |
Rao M M, Ren Z D. Theory of Orlicz Spaces. Marcel Dekker, 1991
|
[35] |
Schmitt L. The Radon-Nikodym theorem for Lp-spaces of W* algebras. Publ Res Inst Math Sci Kyoto, 1986, 22:1025-1034
|
[36] |
Segal I E. A non-commutative extension of abstract integration. Ann Math, 1953, 57:401
|
[37] |
Takesaki M. Theory of Operator Algebras, vol I. Springer, 1979
|
[38] |
Takesaki M. Duality for crossed products and the structure of von Neumann algebras of type Ⅲ. Acta Math, 1973, 131:249-308
|
[39] |
Terp M. Lp spaces associated with von Neumann algebras. Københavs Universitet, Mathematisk Institut, Rapport No 3a, 1981
|
[40] |
Tolman R C. Foundation of Statistical Mechanics. Oxford, 1938
|
[41] |
Van Daele A. Continuous crossed products and type Ⅲ von Neumann algebras. Cambridge University Press, 1978
|
[42] |
Villani C. A review of mathematical topics in collisional kinetic theory//Handbook of Mathematical Fluid Dynamics, Vol I. Amsterdam:North-Holland, 2002:71-305
|
[43] |
Yeadon F J. Ergodic theorems for semifinite von Neumann algebras I. J London Math Soc, 1977, 16:326-332
|
[44] |
Zippin M. Interpolation of operators of weak type between rearrangement invariant Banach function spaces. J Funct Anal, 1971, 7:267-284
|