[1] |
Bergmann S. Uber die Kernfunktion eines Bereiches und ihr Verhalten am Rände I. J Reine Angew Math, 1933, 169:1-42
|
[2] |
Bergman S. The Kernel Function and Conformal Mapping. Providence, RI:American Mathematical Society, 1950
|
[3] |
Bojarski B, Haj lasz P. Pointwise inequalities for Sobolev functions and some applications. Studia Math, 1993, 106:77-92
|
[4] |
Duren P, Schuster A. Bergman Spaces. Mathematical Surveys and Monographs 100. Providence, RI:American Mathematical Society, 2004
|
[5] |
Haj lasz P. Sobolev spaces on an arbitrary metric space. Potential Anal, 1996, 5:403-415
|
[6] |
Haj lasz P, Koskela P. Sobolev met Poincaré. Mem Amer Math Soc, 2000, 145(688):1-101
|
[7] |
Hedenmalm H, Korenblum B, Zhu K. Theory of Bergman Spaces. Graduate Texts in Mathematics 199. New York:Springer, 2000
|
[8] |
Heinonen J. Lectures on Analysis on Metric Spaces. Berlin:Springer, 2001
|
[9] |
Koskela P, Saksman E. Pointwise characterizations of Hardy-Sobolev functions. Math Res Lett, 2008, 15:727-744
|
[10] |
Nam K. Lipschitz type characterizations of harmonic Bergman spaces. Bull Korean Math Soc, 2013, 50:1277-1288
|
[11] |
Peng R, Xing X, Jiang L. Pointwise multiplication operators from Hardy spaces to weighted Bergman spaces in the unit ball of $\mathbb{C}^n$. Acta Math Sci, 2019, 39B(4):1003-1016
|
[12] |
Sehba B F. Derivatives characterization of Bergman-Orlicz spaces and applications. arXiv:1610.01954
|
[13] |
Wulan H, Zhu K. Lipschitz type characterizations for Bergman spaces. Canad Math Bull, 2009, 52:613-626
|
[14] |
Yang D. New characterizations of Haj lasz-Sobolev spaces on metric spaces. Sci China Math, 2003, 46:675-689
|
[15] |
Zhu K. Spaces of Holomorphic Functions in the Unit Ball. Graduate Texts in Mathematics 226. New Nork:Springer, 2004
|