[1] |
Barbatis G, Davies E. Sharp bounds on heat kernels of higher order uniformly elliptic operators. J Operator Theory, 1996, 36:179-198
|
[2] |
Betancor J J, Fariña J C, Harboure E, et al. Lp-boundedness properties of variation operators in the Schrödinger setting. Rev Mat Complut, 2013, 26:485-534
|
[3] |
Bourgain J. Pointwise ergodic theorems for arithmetic sets. Publ Math IHES, 1989, 69:5-41
|
[4] |
Bui T A. Boundedness of variation operators and oscillation operators for certain semigroups. Nonlinear Anal, 2014, 106:124-137
|
[5] |
Campbell J T, Jones R L, Reinhold K, et al. Oscillation and variation for the Hilbert trans-form. Duke Math J, 2000, 105:59-83
|
[6] |
Campbell J T, Jones R L, Reinhold K, et al. Oscillation and variation for singular integrals in higher dimensions. Trans Amer Math Soc, 2003, 355(5):2115-2137
|
[7] |
Cao J, Liu Y, Yang D. Hardy spaces $H^1_{\mathcal{L}}(\mathbb{R}^n)$ associated to Schrödinger type opertors (-△)2 +V2. Houston Journal of Mathematics, 2010, 36(4):1067-1095
|
[8] |
Dziubánski J, Zienkiewicz J. Hp spaces associated with Schrödinger operators with potentials from reverse Hölder classes. Colloquium Mathematicum, 2003, 98:5-37
|
[9] |
Gillespie A T, Torrea J L. Dimension free estimates for the oscillation of Riesz transforms. Israel J Math, 2004, 141:125-144
|
[10] |
Huang Q, Zhang C. Characterization of temperatures associated to Schrödinger operators with initial data in Morrey spaces. Taiwanese J Math, 2019, 23(5):1133-1151
|
[11] |
Jones R L, Reinhold K. Oscillation and variation inequalities for convolution powers. Ergodic Theory Dynam Systems, 2001, 21:1809-1829
|
[12] |
Jones R L, Seeger A, Wright J. Strong variational and jump inequalities in harmonic analysis. Trans Amer Math Soc, 2008, 360:6711-6742
|
[13] |
Jones R L, Wang G. Variation inequalities for the Fejér and Poisson kernels. Trans Amer Math Soc, 2004, 356:4493-4518
|
[14] |
Koch H, Lamm T. Geometric flows with rough initial data. Asian J Math, 2012, 16:209-236
|
[15] |
Le Merdy C, Xu Q. Strong q-variation inequalities for analytic semigroups. Ann Inst Fourier (Grenoble), 2012, 62:2069-2097
|
[16] |
Lépingle D. La variation d'ordre pdes semi-martingales. Z Wahrscheinlichkeitstheor Verw Geb, 1976, 36:295-316
|
[17] |
Liu Y, Dong J. Some estimates of higher order Riesz transform related to Schrödinger operator. Potential Anal, 2010, 32:41-55
|
[18] |
Liu Y, Zhang J, Sheng J, et al. Some estimates for commutators of Riesz transform associated with Schrödinger type operators. Czechoslovak Math J, 2016, 66(141):169-191
|
[19] |
Ma T, Torrea J L, Xu Q. Weighted variation inequalities for differential operators and singular integrals. J Funct Anal, 2015, 268:376-416
|
[20] |
Morrey C B. On the solutions of quasi-linear elliptic partial differential equations. Trans Amer Math Soc, 1938, 43:126-166
|
[21] |
Shen Z. Lp estimates for Schrödinger operators with certain potentials. Ann Inst Fourier (Grenoble), 1995, 45:513-546
|
[22] |
Stein E M. Harmonic Analysis:Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Monographs in Harmonic Analysis, Ⅲ. Princeton:Princeton Univ Press, 1993
|
[23] |
Song L, Tian X, Yan L. On characterization of Poisson integrals of Schrödinger operators with Morrey traces. Acta Math Sin (Engl Ser), 2018, 34:787-800
|
[24] |
Stein E M, Weiss G. Introduction to Fourier Analysis on Euclidean Spaces. Princeton:Princeton Univ Press, 1970
|
[25] |
Sugano S. Lp estimates for some Schrödinger type operators and a Calderón-Zygmund operator of Schrödinger type. Tokyo J Math, 2007, 30:179-197
|
[26] |
Tang L, Dong J. Boundedness for some Schrödinger type operators on Morrey spaces related to certain nonnegative potentials. J Math Anal Appl, 2009, 355:101-109
|
[27] |
Yuan W, Sickel W, Yang D. Morrey and Campanato meet Besov, Lizorkin and Triebel. Lecture Notes in Mathematics, 2005. Berlin:Springer-Verlag, 2010
|
[28] |
Zhang J, Wu H. Variation inequalities related to Schrödinger operators om Morrey spaces. Chin Ann Math Ser B, 2018, 39(6):973-988
|
[29] |
Zhong J. Harmonic Analysis for Some Schröinger Type Operators[D]. Princeton University, 1993
|