[1] Antonelli P, Marcati P. On the finite energy weak solutions to a system in quantum fluid dynamics. Comm Math Phys, 2009, 287(2):657-686 [2] Antonelli P, Marcati P. The quantum hydrodynamics system in two space in two space dimensions. Arch Rational Mech Anal, 2012, 203:499-527 [3] Cho Y, Choe H J, Kim H. Unique solvability of the initial boundary value problems for compressible viscous fluids. J Math Pures Appl, 2004, 83:243-275 [4] Fan J S, Jiang S. Blow-up criteria for the Navier-Stokes equations of compressible fluids. J Hyper Diff Eqns, 2008, 5:167-185 [5] Feynman R, Giorgini S, Pitaevskii L, Stringari S. Theory of Bose-Einstein condensation in trapped gases. Rev Mode Phys, 1999, 71:463-512 [6] Gamba I M, Gualdani M P, Zhang P. On the blowing up of solutions to quantum hydrodynamic models on bounded domains. Monatsh Math, 2009, 157:37-54 [7] Gamba I M, Jüngel A. Asymptotic limits in quantum trajectory models. Comm PDE, 2002, 27:669-691 [8] Gamba I M, Jüngel A. Positive solutions to singular second and third order differential equations for quantum fluids. Arch Ration Mech Anal, 2001, 156:183-203 [9] Gardner C. The quantum hydrodynamic model for semiconductors devices. SIAM J Appl Math, 1994, 54:409-427 [10] Gasser I, Markowich P. Quantum hydrodynamics, Wigner transforms and the classical limit. Asymptotic Anal, 1997, 14:97-116 [11] Gasser I, Markowich P A, Ringhofer C. Closure conditions for classical and quantum moment hierarchies in the small temperature limit. Transp Theory Stat Phys, 1996, 25:409-423 [12] Gualdani M P, Jüngel A. Analysis of the viscous quantum hydrodynamic equations for semiconductors. Eur J Appl Math, 2014, 15:577-595 [13] Guo B L, Wang G W. Blow-up of the smooth solution to quantum hydrodynamic models in Rd. J Diff Eqns, 2016, 162(7):3815-3842 [14] Guo B L, Wang G W. Blow-up of the smooth solution to quatum hydrodynamic models in half space. J Math Phys, 2017, 58(3):031505 [15] Huang F M, Li H L. Matsumura A. Existence and stability of steady-state of one-dimensional quantum hydrodynamic system for semiconductors. J Diff Eqns, 2006, 225(1):1-25 [16] Huang F M, Li H L, Matsumura A, Odanaka S. Well-posedness and stability of multi-dimensional quantum hydrodynamics for semiconductors in R3//Series in Contemporary Applied Mathematics CAM 15. Beijing:High Education Press, 2010 [17] Huang X D, Li J, Xin Z P. Blowup criterion for viscous barotropic flows with vacuum states. Comm Math Phys, 2011, 301:23-35 [18] Huang X D, Li J, Xin Z P. Serrin type criterion for the three-dimensional viscous compressible flows. SIAM J Math Anal, 2011, 43:1872-1886 [19] Huang X D, Xin Z P. A blow-up criterion for classical solutions to the compressible Navier-Stokes equations. Sci China Math, 2010, 53(3):671-686 [20] Jüngel A. A steady-state quantum Euler-Poisson system for potential flows. Comm Math Phys, 1998, 194:463-479 [21] Jüngel A, Li H L. Quantum Euler-Poisson systems:existence of stationary states. Arch Math (Brno), 2004, 40:435-456 [22] Jüngel A, Li H L. Quantum Euler-Poisson systems:global existence and exponential decay. Quart Appl Math, 2004, 62(3):569-600 [23] Jüngel A, Milisic J P. Physical and numerical viscosity for quantum hydrodynamics. Comm Math Sci, 2007, 5(2):447-471 [24] Landau L D. Theory of the superfluidity of Helium II. Phys Rev, 1941, 60:356 [25] Landau L D, Lifshitz E M. Quantum mechanics:non-relativistic theory. New York:Pergamon Press, 1977 [26] Li H L, Marcati P. Existence and asymptotic behavior of multi-dimensional quantum hydrodynamic model for semiconductors. Comm Math Phys, 2004, 245:215-247 [27] Loffredo M, Morato L. On the creation of quantum vortex lines in rotating HeII. Il Nouvo Cimento, 1993, 108B:205-215 [28] Madelung E. Quantuentheorie in hydrodynamischer form. Z Physik, 1927, 40:322 [29] Nishibata S, Suzuki M. Asymptotic stability of a stationary solution to a thermal hydrodynamic model for semiconductor. Arch Rational Mech Anal, 2009, 192(2):187-215 [30] Nishibata S, Suzuki M. Initial boundary value problems for a quantum hdyrodyanmic model of semiconductors:asymptotic behaviors and classical limits. J Diff Eqns, 2008, 244(4):836-874 [31] Sun Y Z, Wang C, Zhang Z F. A Beale-Kato-Majda blow-up criterion for the 3-D compressible Navier-Stokes equations. J Math Pures Appl, 2011, 95:36-47 [32] Zhang B, Jerome J W. On a steady-state quantum hydrodynamic model for semiconductors. Nonlinear Anal TMA, 1996, 26(4):845-856 |