[1] Di Nunno G, Øksendal B, Proske F. Malliavin Calculus for Lévy Processes with Applications to Finance. Heidelberg:Springer, 2009 [2] Houdré C, Pérez-Abreu V. Chaos Expansions, Multiple Wiener-Itô Integrals and Their Applications. CRC Press, 1994 [3] Hu Y. Analysis on Gaussian Spaces. New Jersey:World Scientific, 2017 [4] Huang Z, Yan J. An Introduction to Infinite dimensional Stochastic Analysis (in Chinese). Beijing:Science Press, 1997 [5] Janson S. Gaussian Hilbert Spaces. Cambridge Tracts Math 129. Cambridge:Cambridge Univ Press, 2008 [6] Malliavin P. Stochastic Analysis. Grundlehren der Mathematischen Wissenschaften 313. Springer, 1997 [7] Nourdin I, Peccati G. Normal approximations with Malliavin calculus. From Stein's method to universality. Combridge:Combridge University Press, 2012 [8] Nualart D. The Malliavin Calculus and Related Topics. Heidelberg:Springer-Verlag, 2006 [9] Wiener N. The Homogeneous chaos. Am J Math, 1938, 60(4):897-936 [10] Itô K. Multiple Wiener Integral. J Math Soc of Japan, 1951, 3:157-169 [11] Cameron R H, Martin W T. The orthogonal development of nonlinear functionals in series of FourierHermite functional. Ann of Math, 1947, 48(2):385-392 [12] Segal I E. Tensor algebras over Hilbert spaces I. Trans Amer Math Soc, 1956, 81:106-134 [13] Gross L. Abstract Wiener spaces//Proc Fifth Berkeley Symp Math Stat Prob Ⅱ. Berkeley:Univ California Press, 1965, Part 1, 31-41 [14] Stroock D W. Homogeneous chaos revisited//Azéma J, Yor M, Meyer P A. Séminaire de Probabilités XXI. Lecture Notes in Mathematics. Vol 1247. Berlin, Heidelberg:Springer, 1987 [15] Gong G L. An Introduction to Stochastic Differential Equations. Second Edition (in Chinese). Beijing:Peking University Press, 1995 [16] Karatzas I, Shreve S E. Brownian Motion and Stochastic Calculus. Second Edition. Heidelberg:Springer, 1998 [17] Revuz D, Yor M. Continous Martingales and Brownian Motion. Third Edition. Heidelberg:Springer, 2005 [18] Itô K. Complex Multiple Wiener Integral. Japan J Math, 1953, 22:63-86 [19] Albeverio S, Ferrario B. Uniqueness Results for the Generators of the Two-Dimensional Euler and NavierStokes Flows. J Funct Anal, 2002, 193:77-93 [20] Chen Y, Ge H, Xiong J, Xu L H. The large deviation principle and steady-state fluctuation theorem for the entropy production rate of a stochastic process in magnetic fields. J Math Phys, 2016, 57(7):073302(16 pp) [21] Chen Y, Hu Y, Wang Z. Parameter Estimation of Complex Fractional Ornstein-Uhlenbeck Processes with Fractional Noise. ALEA Lat Am J Probab Math Stat, 2017, 14:613-629 [22] Cotfas N, Gazeau J P, Górska K. Complex and real Hermite polynomials and related quantizations. J Phys A:Math Theor, 2010, 43:305304(14pp) [23] Deck T. Finite rank Hankel operators over the complex Wiener space. Potential Anal, 2005, 22:85-100 [24] Deck T. Non-Gaussian Random Fields. Potential Anal, 2006, 24:63-86 [25] Hoshino M, Inahama Y, Naganuma N. Stochastic complex Ginzburg-Landau equation with space-time white noise. Electron J Probab, 2017, 22(104):68 pp [26] Kallenberg O. Schoenberg's Theorem and Unitarily Invariant Random Arrays. J Theor Probab, 2012, 25:1013-1039 [27] Chen Y, Liu Y. On the fourth moment theorem for the complex multiple Wiener-Itô integrals. Infin Dimens Anal Quantum Probab Relat Top, 2017, 20(1):1750005 [28] Chen Y, Liu Y. On the eigenfunctions of the complex Ornstein-Uhlenbeck operators. Kyoto J Math, 2014, 54(3):577-596 [29] Chen Y. Product formula and Independence for Complex Multiple Wiener-Ito Integrals. Advances in Mathematics (China), 2017, 46(6):819-827 [30] Hu Y, Meyer P -A. Sur les intégrales multiple de Stratonovitch//Séminaire de Probabilités, XXⅡ, 72-81. Lecture Notes in Math, 1321. Springer, 1988 [31] Hu Y, Meyer P -A. On the approximation of multiple Stratonovich integrals//Stochastic processes, 141-147. New York:Springer, 1993 [32] Hu Y. Integral transformations and anticipative calculus for fractional Brownian motions. Memoirs of the AMS, 2005, 175(825) [33] Chen Y. On a nonsymmetric Ornstein-Uhlenbeck semigroup and its generator. Communications on Stochastic Analysis, 2015, 9(1):69-78 [34] Peccati G, Taqqu M S. Wiener Chaos:Moments, Cumulants and Diagrams. Heidelberg:Springer, 2011 [35] Campese S. Fourth moment theorems for complex Gaussian approximation. preprint. arXiv:1511.00547, 2015 [36] Nualart D, Ortiz-Latorre S. Central limit theorems for multiple stochastic integrals and Malliavin calculus. Stochastic Process Appl, 2008, 118(4):614-628 [37] Arató M, Kolmogorov A N, Sinai Ya G. An estimate of the parameters of a complex stationary Gaussian Markov process. Dokl Akad Nauk SSSR, 1962, 146:747-750 [38] Hu Y, Nualart D. Parameter estimation for fractional Ornstein-Uhlenbeck processes. Stat Probab Lett, 2010, 80(11/12):1030-1038 [39] Hu Y, Nualart D, Zhou H. Parameter estimation for fractional Ornstein-Uhlenbeck processes of general Hurst parameter. Stat Inference Stoch Process, 2017. https://doi.org/10.1007s11203-017-9168-2 [40] Ghanmi A. Operational formulae for the complex Hermite polynomials Hp,q(z, z). Integral Transforms Spec Funct, 2013, 24:884-895 [41] Ismail M. Analytic properties of complex Hermite polynomials. Trans Amer Math Soc, 2016, 368:1189- 1210 [42] Ledoux M. Complex Hermite polynomials:from the semi-circular law to the circular law. Communications on Stochastic Analysis, 2008, 2(1):27-32 |