[1] |
Gao Hongya, Jia Miaomiao.
Local Regularity and Local Boundedness for Solutions to Obstacle Problems
[J]. Acta mathematica scientia,Series A, 2017, 37(4): 706-713.
|
[2] |
Du Guangwei, Niu Pengcheng.
Higher Integrability for Very Weak Solutions of Obstacle Problems to Nonlinear Subelliptic Equations
[J]. Acta mathematica scientia,Series A, 2017, 37(1): 122-145.
|
[3] |
Liu Jiang, Zhu Lintao, Lin Zhigui.
An SEI Epidemic Diffusive Model and Its Moving Front
[J]. Acta mathematica scientia,Series A, 2015, 35(3): 604-617.
|
[4] |
XIAO Shuang, JIAN Ming, CHEN Ai-Xiang, JIAN Bei.
Fuzzy Pricing Formula for European Options with Jumps and Transaction Costs
[J]. Acta mathematica scientia,Series A, 2015, 35(1): 118-130.
|
[5] |
ZHOU Shu-Qing, HU Zhen-Hua, PENG Dong-Yun.
Global Regularity for Very Weak Solutions to Obstacle Promlems Corresponding to a Class of A-Harmonic Equations
[J]. Acta mathematica scientia,Series A, 2014, 34(1): 27-38.
|
[6] |
ZHAO Wei-Xia.
The Global Classical Solution to a Free Boundary Problem in the Peeling Phenomenon
[J]. Acta mathematica scientia,Series A, 2013, 33(6): 1001-1012.
|
[7] |
SUN Yu-Dong, SHI Xi-Min, WU Min.
Barrier Options Pricing when Parameters Dependent on Stock Price
[J]. Acta mathematica scientia,Series A, 2013, 33(5): 912-925.
|
[8] |
SONG Hong-Li, GUO Zhen-Hua.
Existence of Global Strong Solutions and Interface Behavior of Solutions for 1D Compressible Navier-Stokes Equations
with Free Boundary Value Problem
[J]. Acta mathematica scientia,Series A, 2013, 33(4): 601-620.
|
[9] |
ZHAO Wei-Xia.
Study on a Free Boundary Value Problem Arising from Peeling Phenomenon
[J]. Acta mathematica scientia,Series A, 2011, 31(6): 1461-1469.
|
[10] |
WU Jun-De, CUI Shang-Bin.
Existence and Uniqueness of Global Solutions for a Free Boundary Problem Modeling the Growth of Tumors under the Action of Drugs
[J]. Acta mathematica scientia,Series A, 2010, 30(2): 305-319.
|
[11] |
GAO Hong-Y, HE Qian, NIU Hong-Ling, CHU Yu-Ming.
Local Regularity for Very Weak Solutions of Obstacle Problems to the A-Harmonic Operators
[J]. Acta mathematica scientia,Series A, 2009, 29(5): 1291-1297.
|
[12] |
TAO You-Shan, BIAN Bao-Jun.
Parameter Identification for a Model of Tumor Growth in the Presence of Inhibitors
[J]. Acta mathematica scientia,Series A, 2009, 29(5): 1175-1186.
|
[13] |
Zhang Ting.
Discontinuous Solutions of the Navier-Stokes Equations for Compressible Flow with Density-Dependent Viscosity
[J]. Acta mathematica scientia,Series A, 2008, 28(2): 214-221.
|
[14] |
Wei Xuemei; Cui Shangbin.
Asymptotic Behavior of Solutions for a Free Boundary Problem Modelling Tumor Growth
[J]. Acta mathematica scientia,Series A, 2007, 27(4): 648-659.
|
[15] |
Tao Youshan.
Mathematical Analysis of a Model of a Replication-competent Virus in Tumor Cells
[J]. Acta mathematica scientia,Series A, 2006, 26(2): 183-199.
|