Acta mathematica scientia,Series A
• Articles • Previous Articles Next Articles
Chu Yuming
Received:
Revised:
Online:
Published:
Contact:
Abstract: In this paper, the author studies the distortion of cross ratio and poincar\'e metric under (1) If $f$ is a $k$-quasiconformal self mapping of $\overline R^2$, then $16^{\frac1k-1}\left(|(x_1,x_2,x_3,x_4)|+1\right)^{\frac1k}\leq | (f(x_1),f(x_2),f(x_3)$,$f(x_4) ) |+1\leq16^{k-1}\left(|(x_1,x_2,x_3,x_4)|+1\right)^{k}$ for any four points $x_1,x_2,x_3$,$x_4\in\overline R^2$; (2) If $f$ is a $k$-quasiconformal self mapping of $R^2$ and $D$ is a proper subdomain of $R^2$, then $\frac1k\lambda_D(x_1,x_2)+4(\frac1k-1)\log2\leq\lambda_{f(D)}(f(x_1),f(x_2))\leq k\lambda_D(x_1,x_2)+4(k-1)\log2$for any two points $x_1,x_2\in D$ plane quasiconformal mappings, obtaines the following two results.
Key words: Corss ratio, Poincare metric, Distortion; Quasiconformal mapping
CLC Number:
Chu Yuming. The Distortion of Cross Ratio and Poincare Metric under Plane Quasiconformal Mappings[J].Acta mathematica scientia,Series A, 2007, 27(4): 748-752.
0 / / Recommend
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://121.43.60.238/sxwlxbA/EN/
http://121.43.60.238/sxwlxbA/EN/Y2007/V27/I4/748
The Maximal Dilatation and Boundary Dilatation of Quasi-symmetric Mapping
Cited
Blow-up and Global Existence for a Nonlocal Degenerate Parabolic System
On a Class of Singularly Perturbed Problems with
Boundary Perturbation