Acta mathematica scientia,Series A

• Articles • Previous Articles     Next Articles

The Distortion of Cross Ratio and Poincare Metric under Plane Quasiconformal Mappings

Chu Yuming   

  1. Department of Mathematics and Computing Science, Hunan City University, Yiyang 413000
  • Received:2005-08-18 Revised:2006-12-28 Online:2007-08-25 Published:2007-08-25
  • Contact: Chu Yuming

Abstract: In this paper, the author studies the distortion of cross ratio and poincar\'e metric under (1) If $f$ is a $k$-quasiconformal self
mapping of $\overline R^2$, then
$16^{\frac1k-1}\left(|(x_1,x_2,x_3,x_4)|+1\right)^{\frac1k}\leq | (f(x_1),f(x_2),f(x_3)$,
$f(x_4) ) |+1
\leq16^{k-1}\left(|(x_1,x_2,x_3,x_4)|+1\right)^{k}$ for any four points $x_1,x_2,x_3$,
$x_4\in\overline R^2$;

(2) If $f$ is a $k$-quasiconformal self mapping of $R^2$ and $D$ is a proper subdomain of $R^2$,
then $\frac1k\lambda_D(x_1,x_2)+4(\frac1k-1)\log2\leq\lambda_{f(D)}(f(x_1),f(x_2))\leq k\lambda_D(x_1,x_2)+4(k-1)\log2$
for any two points $x_1,x_2\in D$
plane quasiconformal mappings, obtaines the following two results.

Key words: Corss ratio, Poincare metric, Distortion; Quasiconformal mapping

CLC Number: 

  • 30C62
Trendmd