Acta mathematica scientia,Series A
• Articles • Previous Articles Next Articles
Huang Yuanqiu; Zhao Tinglei
Received:
Revised:
Online:
Published:
Contact:
Abstract: The well known Zarankiewicz' conjecture is said that the crossing number of the complete bipartite graph Km,n (m≤ n) is Z(m,n), where Z(m,n)=\lfloor\frac{m}{2}\rfloor\lfloor\frac{m-1}{2}\rfloor\lfloor\frac{n}{2}\rfloor$$\lfloor\frac{n-1}{2}\rfloor$ (for any real number x, $\lfloor x\rfloor$ denotes the maximal integer no more than x). Presently, Zarankiewicz' conjecture is proved true only for the case m≤ 6. In this article, the authors prove that if Zarankiewicz' conjecture holds for m≤ 9, then the crossing number of the complete tripartite graph K1,8,n is $Z(9, n)+ 12\lfloor\frac{n}{2}\rfloor$.
Key words: Graphs, Drawing, Crossing number, Complete tripartite graph, Complete tripartite graph
CLC Number:
Huang Yuanqiu; Zhao Tinglei. ON THE CROSSING NUMBER OF THE COMPLETE TRIPARTITE GRAPH K1,8,n[J].Acta mathematica scientia,Series A, 2006, 26(6): 1115-.
0 / / Recommend
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://121.43.60.238/sxwlxbA/EN/
http://121.43.60.238/sxwlxbA/EN/Y2006/V26/I6/1115
Cited