Acta mathematica scientia,Series A ›› 2025, Vol. 45 ›› Issue (3): 934-945.
Previous Articles Next Articles
Yazhi LI1,Lili Liu2,Yanni Tian3,*()
Received:
2024-08-21
Revised:
2025-02-13
Online:
2025-06-26
Published:
2025-06-20
Supported by:
CLC Number:
Yazhi LI, Lili Liu, Yanni Tian. Optimal Control Strategy for the SVEITR Pulmonary Tuberculosis Transmission Model Considering Diffusion[J].Acta mathematica scientia,Series A, 2025, 45(3): 934-945.
[1] | Global Tuberculosis report 2023. Geneva: World Health Organization; 2023. Licence:CC BY-NC-SA 3.O IGO |
[2] | Mao K X, Zhen C X, Hong Yan L U, et al. Protective eff ect of vaccination of Bacille Calmette-Gnerin on children. Chin J Contemp Pediatr, 2003, 5(4): 325-327 |
[3] |
Abubakar I, Pimpin L, et al. Systematic review and meta-analysis of the current evidence on the duration of protection by bacillus Calmette-Guerin vaccination against tuberculosis. Health Technol Assess, 2013, 17(37): 1-372
doi: 10.3310/hta17370 pmid: 24021245 |
[4] | 徐瑞, 周凯娟, 白宁. 一类基于游离病毒感染和细胞-细胞传播的宿主体内 HIV-1 感染动力学模型. 数学物理学报, 2024, 44A(3): 771-782 |
Xu R, Zhou K J, Bai N. A with-in host HIV-1 infection dynamics model based on virus-to-cell infection and cell-to-cell transmission. Acta Math Sci, 2024, 44A(3): 771-782 | |
[5] | 杨俊元, 张晨琳, 杨丽. 年龄结构流感模型综合控制策略研究. 数学物理学报, 2024, 44A(3): 804-814 |
Yang J Y, Zhang C L, Yang L. Study on comprehensive control strategies of an age structured influenza model. Acta Math Sci, 44A (3): 804-814 | |
[6] | Liu J L, Zhang T L. Global stability for a tuberculosis model. Math Comput Model, 2011, 54: 836-845 |
[7] | Li Y, Liu X N, Yuan Y Y, et al. Global analysis of tuberculosis dynamical model and optimal control strategies based on case data in the United States. Appl Math Comput, 2022, 422: 126983 |
[8] | Yang Y L, Tang S Y, Ren X H, et al. Global stability and optimal control for a tuberculosis model with vaccination and treatment. Discrete Contin Dyn Syst Ser B, 2017, 21(3): 1009-1022 |
[9] | Gao D P, Huang N J. A note on global stability for a tuberculosis model. Appl Math Lett, 2017, 73: 163-168 |
[10] | Liu S Y, Bi Y J, Liu Y W. Modeling and dynamic analysis of tuberculosis in mainland China from 1998 to 2017: the effect of DOTS strategy and further control. Theor Biol Med Model, 2020, 17(6): 1-10 |
[11] | Gao D P, Huang N J. Optimal control analysis of a tuberculosis model. Appl Math Model, 2018, 58: 47-64 |
[12] | Egonmwan A O, Okuonghae D. Mathematical analysis of a tuberculosis model with imperfect vaccine. Int J Biomath, 2019, 12(7): 1950073 |
[13] | Bhih A E, Laaroussi A E A, Ghazzali R, et al. An optimal chemoprophylaxis and treatment control for a spatiotemporal tuberculosis model. Commun Math Biol Neurosci, 2021, 2021: Article 40 |
[14] | Wang Z P, Xu R. Stability and traveling waves of an epidemic model with relapse and spatial diffusion. J Appl Anal Comput, 2014, 4(3): 307-322 |
[15] | Zhang R, Liu L L, Feng X M, et al. Existence of traveling wave solutions for a diffusive tuberculosis model with fast and slow progression. Appl Math Lett, 2021, 112: 106848 |
[16] | Lenhart S, Workman J T. Optimal Control Applied to Biological Models. New York: Chapman & Hall/CRC, 2007 |
[1] | Wu Ziyi, Yang Junyuan. Study on Parameter Identifiability of an Age-Structured Tuberculosis Model with Relapse [J]. Acta mathematica scientia,Series A, 2025, 45(1): 269-278. |
[2] | Wu Peng, Fang Cheng. Dynamical Analysis and Numerical Simulation of a Syphilis Epidemic Model with Heterogeneous Spatial Diffusion [J]. Acta mathematica scientia,Series A, 2024, 44(5): 1352-1367. |
[3] | Zhang Xiao, Zhang Hongwu. Fractional Tikhonov Regularization Method for an Inverse Boundary Value Problem of the Fractional Elliptic Equation [J]. Acta mathematica scientia,Series A, 2024, 44(4): 978-993. |
[4] | Bin Maojun, Shi Cuiyun. Time Optimal Control for Semilinear Riemann-Liouville Fractional Evolution Feedback Control Systems [J]. Acta mathematica scientia,Series A, 2024, 44(3): 687-698. |
[5] | Yang Junyuan, Zhang Chenlin, Yang Li. Study on Comprehensive Control Strategies of an Age Structured Influenza Model [J]. Acta mathematica scientia,Series A, 2024, 44(3): 804-814. |
[6] | Li Yuanfei, Li Dandan, Shi Jincheng. Structural Stability of Temperature Dependent Double Diffusion Model on a Semi-infinite Cylinder [J]. Acta mathematica scientia,Series A, 2024, 44(1): 120-132. |
[7] | Wu Peng, He Zerong. Spatio-temporal Dynamics of HIV Infection Model with Periodic Antiviral Therapy and Nonlocal Infection [J]. Acta mathematica scientia,Series A, 2024, 44(1): 209-226. |
[8] | Zhong Yi, Wang Yi, Jiang Tianhe. Dynamic Analysis and Optimal Control of an SIAQR Transmission Model with Asymptomatic Infection and Isolation [J]. Acta mathematica scientia,Series A, 2023, 43(6): 1914-1928. |
[9] |
Lu Weiping,Liu Hanbing.
Sampled-Data Time Optimal Control for Heat Equation with Potential in |
[10] | Zeng Biao. Optimal Control for a Class of Nonlinear Evolutionary Equations with Weakly Continuous Operators [J]. Acta mathematica scientia,Series A, 2023, 43(2): 515-530. |
[11] | Zhenxiang Hu,Linfei Nie. Analysis of a Reaction-Diffusion Epidemic Model with Horizontal Transmission and Environmental Transmission [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1849-1860. |
[12] | Xiaoyong Cui,Can Zhang. Turnpike Properties of a Class of Optimal Control Problems with Exponential Weights [J]. Acta mathematica scientia,Series A, 2022, 42(4): 1256-1264. |
[13] | Zerong He,Yimeng Dou,Mengjie Han. Optimal Boundary Control for a Hierarchical Size-Structured Population Model with Delay [J]. Acta mathematica scientia,Series A, 2022, 42(3): 867-880. |
[14] | Zerong He,Nan Zhou. Optimal Harvesting in a Competing System of Hierarchical Age-Structured Populations [J]. Acta mathematica scientia,Series A, 2022, 42(1): 228-244. |
[15] | Hongwu Zhang. One Regularization Method for a Cauchy Problem of Semilinear Elliptic Equation [J]. Acta mathematica scientia,Series A, 2022, 42(1): 45-57. |
|