Acta mathematica scientia,Series A ›› 2025, Vol. 45 ›› Issue (3): 902-918.
Previous Articles Next Articles
Zhanfeng Wang1(),Jingyao Wang1(
),Yaohua Wu1(
),Ruixing Ming2,*(
)
Received:
2024-11-01
Revised:
2025-01-26
Online:
2025-06-26
Published:
2025-06-20
Supported by:
CLC Number:
Zhanfeng Wang, Jingyao Wang, Yaohua Wu, Ruixing Ming. A Composite Tobit Quantile Subgroup Analysis Regression Approach Based on Doubly Censored Longitudinal Data[J].Acta mathematica scientia,Series A, 2025, 45(3): 902-918.
[1] | Tobin J. Estimation of relationships for limited dependent variables. Econometrica, 1958, 26(1): 24-36 |
[2] | Bauer T K, Sinning M. Blinder-oaxaca decomposition for tobit models. Applied Economics, 2010, 42(12): 1569-1575 |
[3] | Anastasopoulos P C, Shankar V N, Haddock J E, et al. A multivariate tobit analysis of highway accident-injuryseverity rates. Accident Analysis & Prevention, 2012, 45(1): 110-119 |
[4] | Amore M D, Murtinu S. Tobit models in strategy research: Critical issues and applications. Global Strategy Journal, 2021, 11(3): 331-355 |
[5] |
Twisk J, Rijmen F. Longitudinal tobit regression: a new approach to analyze outcome variables with floor or ceiling effects. Journal of Clinical Epidemiology, 2009, 62(9): 953-958
doi: 10.1016/j.jclinepi.2008.10.003 pmid: 19211221 |
[6] |
Laird N M, Ware J H. Random-effects models for longitudinal data. Biometrics, 1982, 38(4): 963-974
pmid: 7168798 |
[7] | Sattar A, Weissfeld L A, Molenberghs G. Analysis of non-ignorable missing and left-censored longitudinal data using a weighted random effects tobit model. Statistics in Medicine, 2011, 30(27): 3167-3180 |
[8] | Jiang W Y, Freidlin B, Simon R. Biomarker-adaptive threshold design: a procedure for evaluating treatment with possible biomarker-defined subset effect. Journal of the National Cancer Institute, 2007, 99(13): 1036-1043 |
[9] | Chen B E, Jiang W Y, Tu D S. A hierarchical bayes model for biomarker subset effects in clinical trials. Computational Statistics & Data Analysis, 2014, 71(19): 324-334 |
[10] | He Y, Lin H Z, Tu D S. A single-index threshold cox proportional hazard model for identifying a treatment-sensitive subset based on multiple biomarkers. Statistics in Medicine, 2018, 37(23): 3267-3279 |
[11] |
Moineddin R, Butt D A, Tomlinson G, et al. Identifying subpopulations for subgroup analysis in a longitudinal clinical trial. Contemporary Clinical Trials, 2008, 29(6): 817-822
doi: 10.1016/j.cct.2008.07.002 pmid: 18718556 |
[12] |
Shen J, Qu A. Subgroup analysis based on structured mixed-effects models for longitudinal data. Journal of Biopharmaceutical Statistics, 2020, 30(4): 607-622
doi: 10.1080/10543406.2020.1730867 pmid: 32126871 |
[13] | Ge X Y, Peng Y W, Tu D S. A threshold linear mixed model for identification of treatment-sensitive subsets in a clinical trial based on longitudinal outcomes and a continuous covariate. Statistics Methods in Medical Research, 2020, 29(10): 2919-2931 |
[14] | Koenker R, Bassett G. Regression quantiles. Econometrica, 1978, 46(1): 33-50 |
[15] | Zou H, Yuan M. Composite quantile regression and the oracle model selection theory. Annals of Statistics, 2008, 36(3): 1008-1126 |
[16] | Guo J, Tang M L, Tian M Z, et al. Variable selection in high-dimensional partially linear additive models for composite quantile regression. Computational Statistics & Data Analysis, 2013, 65: 56-67 |
[17] | Jiang R, Qian W M, Li J R. Testing in linear composite quantile regression models. Computational Statistics, 2014, 29(5): 1381-1402 |
[18] | Huang H W, Chen Z X. Bayesian composite quantile regression. Journal of Statistical Computation and Simulation, 2015, 85(18): 3744-3754 |
[19] | Tang Y L, Song X Y, Zhu Z Y. Variable selection via composite quantile regression with dependent errors. Statistica Neerlandica, 2015, 69(1): 1-20 |
[20] | Xu Q F, Deng K, Jiang C X, et al. Composite quantile regression neural network with applications. Expert Systems with Applications, 2017, 76(9): 129-139 |
[21] | Jiang X J, Jiang J C, Song X Y. Oracle model selection for nonlinear models based on weighted composite quantile regression. Statistica Sinica, 2012, 22(4): 1479-1506 |
[22] | Zhao W H, Lian H, Song X Y. Composite quantile regression for correlated data. Computational Statistics & Data Analysis, 2017, 109: 15-33 |
[23] | Tang L J, Zhou Z G, Wu C C. Weighted composite quantile estimation and variable selection method for censored regression model. Statistics & Probability Letters, 2012, 82(3): 653-663 |
[24] | Xiao L Q, Wang Z F, Wu Y H. Composite quantile regression estimation for left censored response longitudinal data. Acta Mathematicae Applicatae Sinica, English Series, 2018, 34(4): 730-741 |
[25] | Wang Z F, Li T, Xiao L Q, et al. A threshold longitudinal tobit quantile regression model for identification of treatment-sensitive subgroups based on interval-bounded longitudinal measurements and a continuous covariate. Statistics in Medicine, 2023, 42(25): 4618-4631 |
[26] | Brown B M, Wang Y G. Induced smoothing for rank regression with censored survival times. Statistics in Medicine, 2007, 26(4): 828-836 |
[27] | Wang Z F, Ding J L, Sun L Q, et al. Tobit quantile regression of left-censored longitudinal data with informative observation times. Statistica Sinica, 2018, 28(1): 527-548 |
[28] | Boyd S, Parikh N, Chu E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends® in Machine Learning, 2011, 3(1): 1-122 |
[29] | Wang Z F, Wu Y H, Zhao L C. Approximation by randomly weighting method in censored regression model. Science in China Series A: Mathematics, 2009, 52(3): 561-576 |
[30] | Wells J C, Tu D S, Siu L L, et al. Outcomes of older patients (≥70 years) treated with targeted therapy in metastatic chemorefractory colorectal cancer: Retrospective analysis of NCIC CTG CO.17 and CO.20. Clinical Colorectal Cancer, 2019, 18(1): e140-e149 |
[31] | Xiao L Q, Hou B, Wang Z F, et al. Random weighting approximation for tobit regression models with longitudinal data. Computational Statistics & Data Analysis, 2014, 79(3): 235-247 |
[32] | Pollard D. Empirical Processes: Theory and Applications. NSF-CBMS Regional Conference Series in Probability and Statistics 2. Institute of Mathematical Statistics, 1990 |
[33] | Wang H, Fygenson M. Inference for censored quantile regression models in longitudinal studies. The Annals of Statistics, 2009, 37(2): 756-781 |
[34] | Diggle P, Kenward M G. Informative drop-out in longitudinal data analysis. Journal of the Royal Statistical Society, 1994, 43(1): 49-73 |
[1] | Changming Yin,Yuexin Shi. Large Sample Properties of Generalized Estimating Equations with Adaptive Designs for Longitudinal Data [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1925-1936. |
[2] | SUN Hui-Hui, LIN Jin-Guan. Testing for Autocorrelation and Random Effects in Mixed Effect Linear Models Based on M-estimation [J]. Acta mathematica scientia,Series A, 2013, 33(3): 523-534. |
[3] | Zeng Linrui; Zhu Zhongyi. Variance Component Testing in Semiparametric Generalized Linear Model for Longitudinal Data [J]. Acta mathematica scientia,Series A, 2008, 28(4): 585-594. |
|