Acta mathematica scientia,Series A ›› 2025, Vol. 45 ›› Issue (2): 418-433.

Previous Articles     Next Articles

Global Strong Solution of 3D Temperature-Dependent Incompressible MHD-Boussinesq Equations with Fractional Dissipation

Hui Liu1,Lin Lin2,Chengfeng Sun3,*()   

  1. 1School of Mathematical Sciences, University of Jinan, Jinan 250022
    2School of Arts and Sciences, Shanghai Dianji University, Shanghai 201306
    3School of Applied Mathematics, Nanjing University of Finance and Economics, Nanjing 210023
  • Received:2023-10-24 Revised:2024-09-25 Online:2025-04-26 Published:2025-04-09
  • Contact: Chengfeng Sun E-mail:sch200130@163.com
  • Supported by:
    NSFC(12271293);NSFC(11901342);NSFC(12371445);NSFC(11901302);NSFC(11701269);Project of Youth Innovation Team of Universities of Shandong Province(2023KJ204);Natural Science Foundation of Shandong Province(ZR2023MA002);Natural Science Foundation of Jiangsu Province(BK20231301)

Abstract:

The 3D generalized incompressible MHD-Boussinesq equations with temperature-dependent thermal diffusivity and electrical resistivity are considered in this paper. We prove that there is a unique global strong solution of the 3D generalized incompressible MHD-Boussinesq equations with temperature-dependent thermal diffusivity and electrical resistivity in the Sobolev spaces Hs for any s>2.

Key words: MHD-Boussinesq equations, strong solution, thermal diffusivity

CLC Number: 

  • O175.2
Trendmd