Acta mathematica scientia,Series A ›› 2025, Vol. 45 ›› Issue (2): 334-346.
Previous Articles Next Articles
Received:
2024-01-05
Revised:
2024-09-16
Online:
2025-04-26
Published:
2025-04-09
Supported by:
CLC Number:
Yanxue Lin. Dynamical Localization for the CMV Matrices with Verblunsky Coeffcients Defined by the Skew-Shift[J].Acta mathematica scientia,Series A, 2025, 45(2): 334-346.
[1] | Avila A, Bochi J, Damanik D. Cantor spectrum for Schrödinger operators with potentials arising from generalized skew-shifts. Duke Math J, 2009, 146(2): 253-280 |
[2] | Avila A, Jitomirskaya S. Almost localization and almost reducibility. J Eur Math Soc, 2009, 12(1): 93-131 |
[3] | Bochner S, Martin W T. Several Complex Variables. Princeton NJ: Princeton University Press, 1948 |
[4] | Bourgain J. Green's Function Estimates for Lattice Schrödinger Operators and Applications. Princeton NJ: Princeton University Press, 2005 |
[5] | Bourgain J, Goldstein M. On nonperturbative localization with quasi-periodic potential. Ann of Math, 2000, 152(3): 835-879 |
[6] |
Bourgain J, Goldstein M, Schlag W. Anderson localization for Schrödinger operators on |
[7] |
Bourgain J, Goldstein M, Schlag W. Anderson localization for Schrödinger operators on ![]() |
[8] |
Bourgain J, Schlag W. Anderson localization for Schrödinger operators on |
[9] | Bucaj V, Damanik D, Fillman J, et al. Localization for the one-dimensional Anderson model via positivity and large deviations for the Lyapunov exponent. Trans Amer Math Soc, 2019, 372(5): 3619-3667 |
[10] | Cantero M J, Moral L, Grünbaum F A, Velázquez L. Matrix-valued Szegö polynomials and quantum random walks. Comm Pure Appl Math, 2010, 63(4): 464-507 |
[11] | Cantero M J, Moral L, Velázquez L. Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle. Linear Algebra Appl, 2003, 362: 29-56 |
[12] | Cedzich C, Werner A H. Anderson localization for electric quantum walks and skew-shift CMV matrices. Comm Math Phys, 2021, 387(3): 1257-1279 |
[13] |
Chulaevsky V A, Sinai Ya G. Anderson localization for the ![]() |
[14] | Damanik D. Schrödinger operators with dynamically defined potentials. Ergodic Theory Dynam Systems, 2017, 37(6): 1681-1764 |
[15] | Damanik D, Fillman J, Lukic M, Yessen W. Characterizations of uniform hyperbolicity and spectra of CMV matrices. Discrete Contin Dyn Syst S, 2016, 9(4): 1009-1023 |
[16] | Davis E B, Simon B. Eigenvalue estimates for non-normal matrices and the zeros of random orthogonal polynomials on the unit circle. J Approximation Theory, 2006, 141(2): 189-213 |
[17] | Fillman J, Ong D C. Purely singular continuous spectrum for limit-periodic CMV operators with applications to quantum walks. J Funct Anal, 2017, 272(12): 5107-5143 |
[18] | Goldstein M, Schlag W. Hölder continuity of the integrated density of the sates for quasiperodic Schrödinger equations and averages of shifts of subharmonic functions. Ann of Math, 2001, 154(1): 155-203 |
[19] | Guo S, Piao D. Lyapunov behavior and dynamical localization for quasi-periodic CMV matrices. Linear Algebra Appl, 2020, 606: 68-89 |
[20] | Kingman J. Subadditive ergodic theory. Ann Probab, 1973, 1: 883-899 |
[21] | Klein S. Anderson localization for the discrete one-dimensional quasi-periodic Schrödinger operator with potential defined by a Gevrey-class function. J Funct Anal, 2005, 218(2): 255-292 |
[22] | Krüger H. Orthogonal polynomials on the unit circle with Verblunsky coefficients defined by the skew-shift. Int Math Res Not, 2013, 2013(18): 4135-4169 |
[23] | Krüger H. The spectrum of skew-shift Schrödinger operators contains intervals. J Funct Anal, 2012, 262(3): 773-810 |
[24] | Lagendijk A, Tiggelen B, Wiersma D. Fifty years of Anderson localization. Phys Today, 2009, 62(8): 24-29 |
[25] | Lin Y X, Piao D X, Guo S Z. Anderson localization for the quasi-periodic CMV matrices with Verblunsky coefficients defined by the skew-shift. J Funct Anal, 2023, 285(4): 109975 |
[26] | Simon B. Orthogonal Polynomials on the Unit Circle. Province RI: American Mathematical Society, 2005 |
[27] | Sinai Y G. Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential. J Stat Phys, 1987, 46(5/6): 861-909 |
[28] | Tao K. Non-perturbative positive Lyapunov exponent of Schrödinger equations and its applications to skew-shift mapping. J Differential Equations, 2019, 266(6): 3559-3579 |
[29] |
Wang F, Damanik D. Anderson localization for quasi-periodic CMV matrices and quantum walks. J Funct Anal, 2019, 276(6): 1978-2006
doi: 10.1016/j.jfa.2018.10.016 |
[30] | Zhang Z. Uniform hyperbolicity and its relation with spectral analysis of 1D discrete Schrödinger operators. J Spectr Theory, 2020, 10(4): 1471-1517 |
[31] | Zhu X W. Localization for the random CMV matrices. J Approx Theory, 2024, 298: 106008 |
[1] | Zhang Yiran, Li Dingshi. Invariant Measure of Impulsive Fractional Lattice System [J]. Acta mathematica scientia,Series A, 2024, 44(6): 1563-1576. |
[2] | Lian Yuan, Liu Hongjun, Zhu Bin. Weyl Mean Equicontinuity and Weyl Mean Sensitivity of A Random Dynamical System [J]. Acta mathematica scientia,Series A, 2024, 44(6): 1595-1606. |
[3] | Xiao Jianrong. Robust Accessible Hyperbolic Repelling Sets [J]. Acta mathematica scientia,Series A, 2024, 44(1): 1-11. |
[4] | Fu Qinhong, Xiong Lianglin, Zhang Haiyang, Qin Ya, Quan Shenai. Sliding Mode Control for Time-Varying Delay Systems with Semi-Markov Jump [J]. Acta mathematica scientia,Series A, 2023, 43(2): 549-562. |
[5] |
Zhu Kaixuan, Sun Tao, Xie Yongqin.
Global Attractors for a Class of Reaction-Diffusion Equations with Distribution Derivatives in ![]() |
[6] | Kaixuan Zhu,Yongqin Xie,Xinyu Mei,Xijun Deng. Uniform Attractors for the Sup-Cubic Weakly Damped Wave Equations with Delays [J]. Acta mathematica scientia,Series A, 2022, 42(1): 86-102. |
[7] | Yue Sun,Daoxiang Zhang,Wen Zhou. The Influence of Fear Effect on Stability Interval of Reaction-Diffusion Predator-Prey System with Time Delay [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1980-1992. |
[8] | Xiaofang Yang,Xiao Tang,Tianxiu Lu. The Collectively Sensitivity and Accessible in Non-Autonomous Composite Systems [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1545-1554. |
[9] | Kaixuan Zhu,Yongqin Xie,Feng Zhou,Xijun Deng. Pullback Attractors for the Complex Ginzburg-Landau Equations with Delays [J]. Acta mathematica scientia,Series A, 2020, 40(5): 1341-1353. |
[10] | Lan Xu. Another Proof of Variational Principle for Sub-Additive Potentials [J]. Acta mathematica scientia,Series A, 2020, 40(4): 977-982. |
[11] | Yi Shao,Chunxiang A. Limit Cycles Bifurcations of Liénard System of Degree Four with One Nilpotent Cusp [J]. Acta mathematica scientia,Series A, 2020, 40(3): 619-630. |
[12] | Zhiheng Yu,Xiaobing Gong. Polynomial Solutions of the Polynomial-Like Iterative Equation [J]. Acta mathematica scientia,Series A, 2019, 39(6): 1352-1364. |
[13] | Qinghua Zhou,Li Wan,Jie Liu. Global Attracting Set for Neutral Type Hopfield Neural Networks with Time-Varying Delays [J]. Acta mathematica scientia,Series A, 2019, 39(4): 823-831. |
[14] | Chao Yang,Runjie Li. Existence and Stability of Periodic Solution for a Lasota-Wazewska Model with Discontinuous Harvesting [J]. Acta mathematica scientia,Series A, 2019, 39(4): 785-796. |
[15] | Miaomiao Chen,Yongzhen Pei,Xiyin Liang,Yunfei Lv. The Optimal Strategies of SI Pest Control Models with Impulsive Intervention [J]. Acta mathematica scientia,Series A, 2019, 39(3): 689-704. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 102
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 77
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|