[1] |
Hestenes M R, Stiefel E. Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards (United States), 1952, 49(6): 409-436
|
[2] |
Paige C C, Saunders M A. Solution of sparse indefinite systems of linear equations. SIAM Journal on Numerical Analysis, 1975, 12(4): 617-629
|
[3] |
Saad Y. Iterative Methods for Sparse Linear Systems. SIAM: Philadelphia PA USA, 2003
|
[4] |
Lanczos C. Solution of systems of linear equations by minimized iterations. Journal of Research of the National Bureau of Standards, 1952, 49: 33-53
|
[5] |
Fletcher R. Conjugate gradient methods for indefinite systems. Springer, 1976, 506: 73-89
|
[6] |
Saad Y, Shultz M H. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 1986, 7(3): 856-869
|
[7] |
Eisenstat S C, Elman M H, Schultz M H. Variational iterative methods for nonsymmetric systems of linear equations. SIAM Journal on Numerical Analysis, 1983, 20(2): 345-357
|
[8] |
Sogabe T, Sugihara M, Zhang S L. An extension of the conjugate residual method to nonsymmetric linear systems. Journal of Computational and Applied Mathematics, 2009, 226(1): 103-113
|
[9] |
Kressner D, Tobler C. Krylov subspace methods for linear systems with tensor product structure. SIAM Journal on Matrix Analysis and Applications, 2010, 31(4): 1688-1714
|
[10] |
Van der Vorst H A. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 1992, 13(2): 631-644
|
[11] |
Gutknecht M H. Variants of BICGSTAB for matrices with complex spectrum. SIAM Journal on Scientific Computing, 1993, 14(5): 1020-1033
|
[12] |
Zhang S L. GPBi-CG: Generalized product-type methods based on Bi-CG for solving nonsymmetric linear systems. SIAM Journal Scientific Computing, 1997, 18(3): 537-551
|
[13] |
Zhou B, Lam J, Duan G R. On smith-type iterative algorithms for the stein matrix equation. Applied Mathematics Letters, 2009, 22(7): 1038-1044
|
[14] |
DeAlba L M, Johnson C R. Possible inertia combinations in the stein and lyapunov euations. Linear Algebra and its Applications, 1995, 222: 227-240
|
[15] |
Fuhrmann P A. A functional approach to the stein equation. Linear Algebra and its Applications, 2010, 432(12): 3031-3071
|
[16] |
Gouveia M C. On the solution of sylvester, lyapunov and stein equations over arbitrary rings. International Journal of Pure and Applied Mathematics, 2005, 24(1): 135-141
|
[17] |
Betser A, Cohen N, Zeheb E. On solving the lyapunov and stein equations for a companion matrix. Systems and Control Letters, 1995, 25(3): 211-218
|
[18] |
Chiang C Y. A note on the $\top$-Stein matrix equation. Abstract and Applied Analysis. Hindawi Publishing Corporation, 2013, 2013(1): 824641
|
[19] |
Xu X J, Wang Q W. Extending BiCG and BiCR methods to solve the Stein tensor equation. Computers & Mathematics with Applications, 2019, 77(12): 3117-3127
|
[20] |
Zhang X F, Wang Q W. On RGI algorithms for solving sylvester tensor equations. Taiwanese Journal of Mathematics, 2022, 26(3): 501-519
|
[21] |
Chen Y, Li C. Preconditioned tensor format conjugate gradient squared and biconjugate gradient stabilized methods for solving stein tensor equations. Numerical Linear Algebra with Applications, 2023, 30(5): e2502
|