Acta mathematica scientia,Series A ›› 2024, Vol. 44 ›› Issue (5): 1194-1204.
Previous Articles Next Articles
Received:
2024-01-25
Revised:
2024-04-03
Online:
2024-10-26
Published:
2024-10-16
Supported by:
CLC Number:
Liu Haolin, Guo Helin. The Properties of Normalized Solutions for Mass Critical Kirchhoff Type Equations[J].Acta mathematica scientia,Series A, 2024, 44(5): 1194-1204.
[1] | Bao W Z, Cai Y Y. Mathematical theory and numerical methods for Bose-Einstein condensation. Kinet Relat Mod, 2013, 6(1): 1-135 |
[2] |
Bartsch T, Wang Z Q. Existence and multiplicity results for some superlinear elliptic problems on ![]() |
[3] | Carrier G F. On the non-linear vibration string. Quart Appl Math, 1949, 7: 97-101 |
[4] | D'Ancona P, Spagnolo S. Global solvability for the degenerate Kirchhoff equation with real analytic data. Invent Math, 1992, 108(1): 247-262 |
[5] | Guo H L, Zhang Y M, Zhou H S. Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. Commun Pure Appl Anal, 2018, 17(5): 1875-1897 |
[6] | Guo H L, Zhou H S. Properties of the minimizers for a constrained minimization problem arising in Kirchhoff equation. Discrete Contin Dyn Syst, 2021, 41(3): 1023-1050 |
[7] | Guo H L, Zhou H S. A constrained variational problem arising in attractive Bose-Einstein condensate with ellipse-shaped potential. Appl Math Lett, 2019, 87: 35-41 |
[8] |
Gidas B, Ni W M, Nirenberg L. Symmetry of positive solutions of nonlinear elliptic equations in ![]() |
[9] | Gilbarg D, Trudinger N S, Elliptic Partial Differential Equations of Second Order. Berlin: Springer-Verlag, 1983 |
[10] | Guo Y J, Lin C S, Wei J C. Local uniqueness and refined spike profiles of ground states for two-dimensional attractive Bose-Einstein condensates. SIAM J Math Anal, 2017, 49(5): 3671-3715 |
[11] | Guo Y J, Seiringer R. On the mass concentration for Bose-Einstein conden-sates with attractive interactions. Lett Math Phys, 2014, 104(2): 141-156 |
[12] | Guo Y J, Wang Z Q, Zeng X Y, Zhou H S. Properties of gound states of attractive Gross-Pitaevskii equations with multi-well potentials. Nonlinearity, 2018, 31(3): 957-979 |
[13] | Hu T X, Tang C L. Limiting behavior and local uniqueness of normalized solutions for mass critical Kirchhoff equations. Calc Var Partial Differential Equations, 2021, 60(6): 210 |
[14] | Kirchhoff G. Mechanik. Teubner Leipzing, 1883 |
[15] |
Kwong M K. Uniqueness of positive solutions of ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
[16] |
Li G B, Ye H Y. On the concentration phenomenon of ![]() ![]() |
[17] |
Mcleod K, Serrin J. Uniqueness of solutions of semilinear Poisson equations. Proc Natl Acad Sci USA, 1981, 78(11): 6592-6595
pmid: 16593115 |
[18] | Pitaevskii L, Stringari S. Bose-Einstein Condensation, International Series of Monographs on Physics. The Clarendon Press, Oxford University Press, 2003 |
[19] | Weinstein M I. Nonlinear Schrödinger equations and sharp interpolation estimates. Comm Math Phys, 1982, 87(4): 567-576 |
[20] |
Ye H Y. The existence of normalized solutions for ![]() ![]() |
[21] |
Ye H Y. The mass concentration phenomenon for ![]() ![]() |
[22] | Zeng X Y, Zhang Y M. Existence and uniqueness of normalized solutions for the Kirchhoff equation. Appl Math Lett, 2017, 74: 52-59 |
[1] | Duan Xueliang, Wu Xiaofan, Wei Gongming, Yang Haitao. Multiple Positive Solutions of Kirchhoff Type Linearly Coupled System with Critical Exponent [J]. Acta mathematica scientia,Series A, 2024, 44(3): 699-716. |
[2] | Li Deke, Wang Qingxuan. Limit Behavior of Mass Critical Inhomogeneous Schrödinger Equation at the Threshold [J]. Acta mathematica scientia,Series A, 2023, 43(1): 123-131. |
[3] | Anran Li,Dandan Fan,Chongqing Wei. Existence and Asymptotic Behaviour of Solutions for Kirchhoff Type Equations with Zero Mass and Critical [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1729-1743. |
[4] |
Penghui Zhang,Zhiqing Han.
Existence of Nontrivial Solutions for Non-autonomous Kirchhoff-type Equations with Critical Growth in ![]() |
[5] |
Yihua Deng.
Existence of Positive Radial Solution to a Class of Kirchhoff type Equation in ![]() |
[6] | Yaling Han,Jianlin Xiang. Existence and Asymptotic Behavior of Ground State for Fractional p-Laplacian Equations [J]. Acta mathematica scientia,Series A, 2020, 40(6): 1622-1633. |
[7] | Yuanfei Li,Zhiqing Li. Phragmén-Lindelöf Type Results for Transient Heat Conduction Equation with Nonlinear Boundary Conditions [J]. Acta mathematica scientia,Series A, 2020, 40(5): 1248-1258. |
[8] | Rongxing Li,Wenqing Wang,Xiaoyu Zeng. A Constrained Variational Problem of Kirchhoff Type Equation with Ellipsoid-Shaped Potential [J]. Acta mathematica scientia,Series A, 2019, 39(6): 1323-1333. |
[9] | MAO Jian-Feng, LI Ye-Ping. Global Existence and Asymptotic Behavior of Smooth Solutions to the IBVP for the 3D Bipolar Euler-Poisson System [J]. Acta mathematica scientia,Series A, 2013, 33(3): 510-522. |
[10] | YANG Zhi-Jian, CHENG Jian-Ling. Asymptotic Behavior of Solutions to the Kirchhoff Type Equation [J]. Acta mathematica scientia,Series A, 2011, 31(4): 1008-1021. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 97
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 69
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|