Acta mathematica scientia,Series A ›› 2024, Vol. 44 ›› Issue (3): 547-562.
Previous Articles Next Articles
Wei Huaquan1(),Wu Hui1,*(
),Liu Xiaoji2(
),Jin Hongwei3(
)
Received:
2023-02-06
Revised:
2023-10-06
Online:
2024-06-26
Published:
2024-05-17
Supported by:
CLC Number:
Wei Huaquan, Wu Hui, Liu Xiaoji, Jin Hongwei. Properties and Computations of the
[1] | Kyrchei I. Explicit representation formulas for the minimum norm least squares solutions of some quaternion matrix equations. Linear Algebra Appl, 2013, 438(1): 136-152 |
[2] | Diao H A, Wei Y M, Xie P P. Small sample statistical condition estimation for the total least squares problem. Numer Algoritm, 2017, 5(2): 435-455 |
[3] | Donchenko V S, Kirichenko N F. Generalized inverse in control with constraints. Cybern Syst Anal, 2003, 39(6): 854-861 |
[4] | Campbell S L, Meyer C D, Rose N J. Applications of the Drazin inverse to linear systems of differential equations with singular constant coefficients. SIAM J Appl Math, 1976, 31(3): 411-425 |
[5] | Meyer C D, Shoaf J M. Updating finite Markov chains by using techniques of group matrix inversion. J Stat Comput Sim, 1980, 11(3/4): 163-181 |
[6] |
Ren B Y, Wang Q W, Chen X Y. The ![]() |
[7] |
Chen X Y, Wang Q W. The ![]() |
[8] | Xu X L, Wang Q W. The consistency and the general common solution to some quaternion matrix equations. Ann Funct Anal, 2023, 14(3): 53 |
[9] | Brock K G. A note on commutativity of a linear operatorand its Moore-Penrose inverse. Numer Func Anal Opt, 1990, 11(7/8): 673-678 |
[10] | Rakoč ević V. Moore-Penrose inverse in Banach algebras. Proc R Ir Acad Ser, 1988, 88(1): 57-60 |
[11] | Meenakshi A R. Generalized inverses of matrices in Minkowski space. Proc Nat Seminar Alg Appl, 2000, 1: 1-14 |
[12] | Ramon C, Rauscher E A. Superluminal transformations in complex Minkowski spaces. Found Phys, 1980, 10(7/8): 661-669 |
[13] | Renardy M. Singular value decomposition in Minkowski space. Linear Algebra Appl, 1996, 236: 53-58 |
[14] | Xing Z F. On the deterministic and non-deterministic Mueller matrix. J Mod Optic, 1992, 39(3): 461-484 |
[15] | Kılıçcman A, Al-Zhour Z. The representation and approximation for the weighted Minkowski inverse in Minkowski space. Math Comput Model, 2008, 47(3/4): 363-371 |
[16] | Al-Zhour Z. Extension and generalization properties of the weighted Minkowski inverse in a Minkowski space for an arbitrary matrix. Comput Math Appl, 2015, 70(5): 954-961 |
[17] | Meenakshi A R, Krishnaswamy D. On sums of range symmetric matrices in Minkowski space. B Malays Math Sci So, 2002, 25(2): 137-148 |
[18] | Meenakshi A R, Krishnaswamy D. Product of range symmetric block matrices in Minkowski space. B Malays Math Sci So, 2006, 29(1): 59-68 |
[19] |
Wang H X, Li N, Liu X J. The |
[20] |
Wang H X, Wu H, Liu X J. The |
[21] | Wang H X, Chen J L. Weak group inverse. Open Math, 2018, 16(1): 1218-1232 |
[22] | Prasad K M, Mohana K S. Core-EP inverse. Linear Multilinear A, 2014, 62(6): 792-802 |
[23] | Wang H X, Liu X J. The weak group matrix. Aequationes Math, 2019, 93(7): 1261-1273 |
[24] | Ferreyra D E, Orquera V, Thome N. A weak group inverse for rectangular matrices. RACSAM Rev R Acad A, 2019, 113(4): 3727-3740 |
[25] | Zhou M M, Chen J L, Zhou Y K. Weak group inverses in proper *-rings. J Algebra Appl, 2020, 19(12): 2050238 |
[26] | Xu S Z, Wang H X, Chen J L, et al. Generalized WG inverse. J Algebra Appl, 2021, 20(5): 2150072 |
[27] | Mosić D, Stanimirović P S. Representations for the weak group inverse. Appl Math Comput, 2021, 397(6): 125957 |
[28] | Yan H, Wang H X, Zuo K Z, et al. Further characterizations of the weak group inverse of matrices and the weak group matrix. AIMS Math, 2021, 6(9): 9322-9341 |
[29] |
Zhou M M, Chen J L, Zhou Y K, et al. Weak group inverses and partial isometries in proper ![]() |
[30] | Mosi′c D, Zhang D C. Weighted weak group inverse for Hilbert space operators. Front Math China, 2020, 15(6): 709-726 |
[31] | Ferreyra D E, Orquera V, Thome N. Representations of the weighted WG inverse and a rank equation’s solution. Linear Multilinear A, 2023, 71(2): 226-241 |
[32] |
Zhou Y K, Chen J L, Zhou M M. ![]() |
[33] |
Wu H, Wang H X, Jin H W. The |
[34] | Wang H X. Core-EP decomposition and its applications. Linear Algebra Appl, 2016, 508: 289-300 |
[35] | Wang G R, Wei Y M, Qiao S Z. Generalized Inverses:Theory and Computations. Beijing: Science Press, 2018 |
[36] | Stewart G W. On the continuity of the generalized inverse. SIAM J Appl Math, 1969, 17(1): 33-45 |
[37] | Stanimirović P S, Cvetković -Ilić D S. Successive matrix squaring algorithm for computing outer inverses. Appl Math Comput, 2008, 203(1): 19-29 |
[1] | Hu Wenyu, Xu Weiru, Zeng Yu. An Inverse Eigenvalue Problem for a Kind of Periodic Pseudo-Jacobi Matrix [J]. Acta mathematica scientia,Series A, 2024, 44(3): 761-770. |
[2] | Hua Wang,Jinfeng Li,Junjie Huang. Reverse Order Law of the Drazin Inverse for Bounded Linear Operators [J]. Acta mathematica scientia,Series A, 2020, 40(1): 1-9. |
[3] | Zou Limin, Wu Yanqiu. Hölder Inequality of Unitarily Invariant Norms for Matrices and Its Applications [J]. Acta mathematica scientia,Series A, 2017, 37(3): 450-456. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 315
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 190
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|