Acta mathematica scientia,Series A ›› 2024, Vol. 44 ›› Issue (3): 513-524.
Received:
2023-05-17
Revised:
2023-10-07
Online:
2024-06-26
Published:
2024-05-17
Supported by:
CLC Number:
Dong Jianxiang. Hankel Operators on Vector-Valued Bergman Space with Exponential Type Weights[J].Acta mathematica scientia,Series A, 2024, 44(3): 513-524.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Békollé D, Defo H, Tchoundja E, Wick B. Litte Hankel operators between vector-valued Bergman spaces on the unit ball. Integral Equations Operator Theory, 2021, 93(3): Article number 28 |
[2] | Bommier-Hato H, Constantin O. Big Hankel operators on vector-valued Fock spaces in $\mathbb{C}^{d}$. Integral Equations Operator Theory, 2018, 90(1): 2-25 |
[3] | 陈建军, 徐广侠. 向量值广义Segal-Bargmann空间上具有正算子值符号的Hankel算子. 数学进展, 2022, 51(2):335-350 |
Chen J J, Xu G X. Hankel operators with positive operator-valued symbols on vector-valued generalized Segal-Bargmann spaces. Adv Math (China), 2022, 51(2): 335-350 | |
[4] | Chen J J, Xu G X. Hankel operators between different doubling Fock spaces. J Inequal Appl, 2022, 2202(1): Article number 136 |
[5] | Constantin O. Weak product decompositions and Hankel operators on vector-valued Bergman spaces. J Operator Theory, 2008, 59(1): 157-178 |
[6] | Constantin O, Ortega-Cerda J. Some spectral properties of the canonical solution operator to $\bar{\partial}$ on weighted Fock spaces. J Math Anal Appl, 2011, 377: 353-361 |
[7] | Das N. Toeplitz and Hankel operators on a vector-valued Bergman space. Khayyam J Math, 2015, 1(2): 230-242 |
[8] | Delin H. Pointwise estimates for the weighted Bergman projection kernel in $\mathbb{C}^{n}$, using a weighted $L^2$ estimate for the $\bar{\partial}$ equation. Ann Inst Fourier (Greno-ble), 1998, 48(4): 967-997 |
[9] | Galanopoulos P. Schatten Class Hankel operators on large Bergman spaces. https://arxiv.org/abs/2106.05898v1, 2021 |
[10] | Gupta A, Gupta B. Bounded and compact Hankel operators on the Fock-Sobolev spaces. Filomat, 2022, 36(14): 4767-4778 |
[11] | Hu Z J, Virtanen J. IDA and Hankel operators on Fock spaces. Analysis & PDE, 2023, 16(9): 2041-2077 |
[12] | Hu Z J, Virtanen J. Schatten class Hankel operators on the Segal-Bargmann space and the Berger-Coburn phenomenon. Trans Amer Math Soc, 2022, 375: 3733-3753 |
[13] | Lin P, Rochberg R. Trace ideal criteria for Toeplitz and Hankel operators on the weighted Bergman spaces with exponential type weights. Pacific J Math, 1996, 173(1): 127-146 |
[14] | Luecking D. Characterizations of certain classes of Hankel operators on the Bergman spaces of the unit disk. J Funct Anal, 1992, 110: 247-271 |
[15] | Lv X F. Embedding theorems and integration operators on Bergman spaces with exponential weights. Ann Funct Anal, 2019, 10(1): 122-134 |
[16] | Lv X F, Arroussi H. Toeplitz operators on Bergman spaces with exponential weights for 0 < p ≤ 1. Bull Sci Math, 2021, 173: 103068 |
[17] | Nikolśki N K. Operators, Functions and Systems: An Easy Reading, Vol 1. Hardy, Hankel and Toeplitz. Providence: American Mathematical Society, 2002 |
[18] | Oliver R. Hankel Operators on Vector-valued Bergman Spaces. Barcelona: Universitat de Barcelona, 2017 |
[19] | Peller V. Hankel Operators and Their Applications. New York: Springer, 2003 |
[20] | Saïd A, Amal H. Pointwise estimate for the Bergman kernel of the weighted Bergman spaces with exponential type weights. C R Math Acad Sci Paris, 2014, 352(1): 13-16 |
[21] | Zhang Y Y, Wang X F, Hu Z J. Toeplitz operators on Bergman spaces with exponential weights. Complex Variables and Elliptic Equations, 2023, 68(6): 947-1007 |
[22] | Zhu K H. Operator Theory in Function Spaces. Providence, RI: American Mathematical Society, 2007 |
[1] | Ku Fuli. Compact Commutators of $m$-Linear Calderón-Zygmund Operators on Generalized Morrey Spaces [J]. Acta mathematica scientia,Series A, 2024, 44(2): 286-297. |
[2] | Liu Xinyan, Li Xiaoguang. Orbital Stability of Standing Waves for a Class of Inhomogeneous Nonlinear Schrödinger Equation [J]. Acta mathematica scientia,Series A, 2024, 44(2): 476-483. |
[3] | Chen Jianhua, Peng Jianwen. Research on the Convergence Rate of Bregman ADMM for Nonconvex Multiblock Optimization [J]. Acta mathematica scientia,Series A, 2024, 44(1): 195-208. |
[4] | Lan Chao, Fan Xingya. The Discrete Series of Affine Symmetric Space ${SO^\ast(6)/SO(3,\mathbb{C})}$ [J]. Acta mathematica scientia,Series A, 2023, 43(6): 1649-1658. |
[5] | Ding Xuanhao,Hou Lin,Li Yongning. The Reproducing Kernel of Bergman Space and the Eigenvectors of Toeplitz Operator [J]. Acta mathematica scientia,Series A, 2023, 43(5): 1333-1340. |
[6] | Shen Qinrui,Sun Junjun. Measure of Non-Compactness of Operators in Hilbert Space [J]. Acta mathematica scientia,Series A, 2023, 43(4): 1003-1008. |
[7] | Li Yixian,Zhang Zhengjie. The Existence of Ground State Solutions for a Class of Equations Related to Klein-Gordon-Maxwell Systems [J]. Acta mathematica scientia,Series A, 2023, 43(3): 680-690. |
[8] | Li Yongxiang,Wei Qilin. Existence Results of Periodic Solutions for Semilinear Evolution Equation in Banach Spaces and Applications [J]. Acta mathematica scientia,Series A, 2023, 43(3): 702-712. |
[9] |
Li Yangrong, Wang Fengling, Yang Shuang.
Backward |
[10] |
Chen Hongxin,Zhang Xuejun,Zhou Min.
Composition Operators on |
[11] | Anran Li,Dandan Fan,Chongqing Wei. Existence and Asymptotic Behaviour of Solutions for Kirchhoff Type Equations with Zero Mass and Critical [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1729-1743. |
[12] | Wenjie Liu,Shengli Xie. Existence Results of Mild Solutions for Impulsive Neutral Measure Differential Equations with Infinite Delay [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1671-1681. |
[13] | Yuting Guo,Xuejun Zhang. Composition Operators from Normal Weight General Function Spaces to Bloch Type Spaces [J]. Acta mathematica scientia,Series A, 2022, 42(5): 1306-1319. |
[14] | Wending Xu,Ting Zhong. The Convergence of Nonsmooth Newton's Method [J]. Acta mathematica scientia,Series A, 2022, 42(5): 1537-1550. |
[15] | Zerong He,Nan Zhou. Optimal Harvesting in a Competing System of Hierarchical Age-Structured Populations [J]. Acta mathematica scientia,Series A, 2022, 42(1): 228-244. |
|