Acta mathematica scientia,Series A
Wei-Min WANG,Wei Yan
Received:
2023-08-16
Revised:
2024-01-02
Published:
2024-01-26
Contact:
Wei-Min WANG
CLC Number:
Wei-Min WANG Wei Yan. The convergence problem and dispersive blow-up of the modified Kawahara equation[J].Acta mathematica scientia,Series A, , (): 0-0.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://121.43.60.238/sxwlxbA/EN/
[1]\bibitem{BBM1972} Benjamin T B, Bona J L, Mahony J J, Model equations for long waves in nonlinear dispersive systems.Philos Trans Roy Soc London Ser A, 1972, {\heiti 272}: 47-78.\\[J]., 1972, (272):47-78 [2]\bibitem{BPSS2014} Bona J L, Ponce G, Saut J-C, Sparber C, Dispersive blow-up for nonlinear Schr\" {o}dinger equations revisited.J Math Pures Appl, 2014, {\heiti 102}: 782-811.\\ [3]\bibitem{BS1993} Bona J L, Saut J-C, Dispersive blow-up of solutions of generalized KdV equations.J Differ Equ, 1993, {\heiti 103}: 3-57.\\ [4]\bibitem{BS2010} Bona J L, Saut J-C, Dispersive blow-up II.Schr\" {o}dinger equations, optical and oceanic rogue waves. Chin Ann Math Ser B, 2010, {\heiti 31}: 793-818.\\ [5]\bibitem{Bourgain1993} Bourgain J, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations.Part I: Schr\" {o}dinger equation. Part II: The KdV equation. Geom Funct Anal, 1993, {\heiti 3}: 107-156, 209-262.\\ [6]\bibitem{Carleson1979} Carleson L, Some analytical problems related to statistical mechanics.Euclidean Harmonic Analysis. Lecture Notes in Mathematics. Springer Berlin Heidelberg, 1980, {\heiti 779}: 5-45.\\ [7]\bibitem{CLMW2009} Chen W G, Li J F, Miao C X, Wu J X, Low regularity solutions of two fifth-order KdV type equations.J Anal Math, 2009, {\heiti 107}: 221-238.\\ [8]\bibitem{C2013} Compaan E, A smoothing estimate for the nonlinear Schr\" {o}dinger equation.Summer 2013 UIUC research eperience for graduate students.\\ [9]\bibitem{CLS2021} Compaan E, Luc$\grave{a}$ R, Staffilani G, Pointwise convergence of the Schr\" {o}dinger flow.Int Math Res Not 2021, 599-650.\\ [10].\bibitem{CT2005} Cui S B, Tao S P, Strichartz estimates for dispersive equations and solvability [11]of the Kawahara equation.J Math Anal Appl, 2005, {\heiti 304}: 683-702.\\ [12].\bibitem{DZ2019} Du X M, Zhang R X, Sharp $L^2$ estimates of the Schr\" {o}dinger maximal function [13]in higher dimensions.Ann Math, 2019, {\heiti 189}: 837-861.\\ [14]\bibitem{MFA} Grafakos L, Modern Fourier analysis.Second edition. Graduate Texts in Mathematics, 250. Springer New York, 2009, ISBN: 978-0-387-09433-5.\\ [15]\bibitem{GS} Gel' fand I M, Shilov G E, Generalized functions.volune 1, properties and operations. 1964, academic press, ISBN: 0-12-279501-6.\\ [16]\bibitem{JH2009} Jia Y L, Huo Z H, Well-posedness for the fifth-order shallow water equations.J Diff Eqns, 2009, {\heiti 246}: 2448-2467.\\ [17]\bibitem{Kawahara1972} Kawahara T, Oscillatory solitary waves in dispersive media.J Phys Soc Japan, 1972, {\heiti 33}: 260-264.\\ [18]\bibitem{KRS1987} Kenig C E, Ruiz A, Sogge C D, Uniform Sobolev inequalities and unique continuation differential operators.Duke Math, 1987, {\heiti 55}: 329-347.\\ [19]\bibitem{LPS2020} Linares F, Pastor A, Drumond Silva J, Dispersive blow-up for solutions the Zakharov-Kuznetsov equation.Annales de l' Institut Henri Poincaré C. Analyse non linéaire, 2021, {\heiti 38}: 281-300.\\ [20]\bibitem{LR} Linares F, Ramos J P G, Maximal function estimates and local well-posedness for the generalized Zakharov-Kuznetsov equation.SIAM J Math Anal, 2021, {\heiti 53}: 914-936.\\ [21]\bibitem{TC2005} Tao S P, Cui S B, Local and global existence of solutions to initial value problems of modified nonlinear Kawahara equation.Acta Math Sin Engl Ser, 2005, {\heiti 21}: 1035-1044.\\ [22]\bibitem{WYZ} Wang W M, Yan W, Zhang Y T, Pointwise convergence problem of the one-dimensional Boussinesq-type equation.Submitted to Math Nachr.\\ [23]\bibitem{YL2010} Yan W, Li Y S, The Cauchy problem for Kawahara equation in Sobolev spaces with low regularity.Math Meth Appl Sci, 2010, {\heiti 33}: 1647-1660.\\ [24]\bibitem{YLY2011} Yan W, Li Y S, Yang X Y, The Cauchy problem for the modified Kawahara equation in Sobolev spaces with low regularity.Math Comput Modelling, 2011, {\heiti 54}: 1252–1261.\\ [25].\bibitem{YL2012} Yan W, Li Y S, Ill-posedness of modified Kawahara equation [26]and Kaup-Kupershmidt equation.Acta Math Sci Ser B(Engl Ed), 2012, {\heiti 32}: 710–716.\\ [27]\bibitem{YWY2022} Yan W, Wang W M, Yan X Q, Convergence problem of the Kawahara equation on the real line.J Math Anal Appl, 2022, {\heiti 55}: 126386.\\ [28]\bibitem{YYDH} Yan W, Yan X Q, Duan J Q, Huang J H, The Cauchy problem for the generalized KdV equation with rough data and random d.[J].rXiv:2011.07128.\\, ata., :- [29]\bibitem{ZYY2023} Zhang Y T, Yan W, Yan X Q, Zhao Y J, Convergence problem of Schr\" {o}dinger equation and wave equation in low regularity spaces.{\it J. Math. Anal. Appl.}, 522(2023), 126921. |
[1] | YANG Yu-Bo, ZHU Peng, YIN Yun-Hui. A Optimal Uniformly Convergent Discontinuous Galerkin Finite Element Method for Singularly Perturbed Problem [J]. Acta mathematica scientia,Series A, 2014, 34(3): 716-726. |
[2] | YANG Zheng, JI Yuan-Yuan, MA He-Ping. Uniform Convergence of the Fourier Spectral Method for the Zakharov Equations [J]. Acta mathematica scientia,Series A, 2013, 33(3): 409-423. |
[3] | YUN Dong-Fang, HUANG Shu-Xiang. On a Class of Singular Equations with Nonlinear Terms Depending on the Gradient [J]. Acta mathematica scientia,Series A, 2012, 32(5): 861-878. |
[4] | LING Neng-Xiang, DING Jie. Asymptotic Properties of Conditional Density Estimation for Dependence Functional Data [J]. Acta mathematica scientia,Series A, 2012, 32(3): 547-556. |
[5] | TU Tian-Liang, MO Jiong. Interpolatory Approximation to Harmonic Function with Boundary Data [J]. Acta mathematica scientia,Series A, 2010, 30(2): 397-404. |
[6] | Peng Zhigang. The Properties of Several Classes of Analytic Functions with Missing Coefficients [J]. Acta mathematica scientia,Series A, 2008, 28(4): 661-669. |
[7] | BANG Zhi-Gang, SU Feng-. Extreme Points and Support Points of a Family of Analytic Func tions [J]. Acta mathematica scientia,Series A, 2005, 25(3): 345-348. |
[8] | XUE Liu-Gen. Uniform Convergence Rates of the Wavelet Estimator of Regression Function Under Mixing Error [J]. Acta mathematica scientia,Series A, 2002, 22(4): 528-535. |
[9] | Wang Guoying . A Uniformly Convergent Difference Scheme for the Singular perturbation Problem of a Nonlinesr Elliptic Equation [J]. Acta mathematica scientia,Series A, 1999, 19(1): 39-44. |
[10] | Zhu Zhongyi, Wei Bocheng. Strong Uniform Convergence Rates for Nonparametric Estimations of Conditional Functional and its Derivatives [J]. Acta mathematica scientia,Series A, 1998, 18(4): 394-401. |
|