Acta mathematica scientia,Series A ›› 2023, Vol. 43 ›› Issue (5): 2075-2088.doi: 10.1007/s10473-023-0509-5

Previous Articles     Next Articles

THE FEKETE-SZEGÖ INEQUALITY AND SUCCESSIVE COEFFICIENTS DIFFERENCE FOR A SUBCLASS OF CLOSE-TO-STARLIKE MAPPINGS IN COMPLEX BANACH SPACES*

Qinghua XU1,†, Weikang FANG1, Weiheng FENG1, Taishun LIU2   

  1. 1. School of Science, Zhejiang University of Science and Technology, Hangzhou 310023, China;
    2. Department of Mathematics, Huzhou University, Huzhou 313000, China
  • Received:2022-02-24 Revised:2023-04-20 Online:2023-10-26 Published:2023-10-25
  • Contact: †Qinghua XU, E-mail: xuqh@mail.ustc.edu.cn
  • About author:Weikang FANG, E-mail:wkfang@163.com; Weiheng FENG, E-mail:whfeng@163.com; Taishun LIU, E-mail: lts@ustc.edu.cn
  • Supported by:
    NNSF of China (11971165) and the Natural Science Foundation of Zhejiang Province (LY21A010003).

Abstract: Let C be the familiar class of normalized close-to-convex functions in the unit disk. In [17], Koepf demonstrated that, as to a function f(ξ)=ξ+m=2amξm in the class C, maxfC|a3λa22|{34λ,λ[0,13],13+49λ,λ[13,23],1,λ[23,1].

By applying this inequality, it can be proven that ||a3||a2||1 for close-to-convex functions. Now we generalized the above conclusions to a subclass of close-to-starlike mappings defined on the unit ball of a complex Banach space.

Key words: Fekete and Szegö inequality, successive coefficients difference bound, close-to-starlike mappings, complex Banach space

CLC Number: 

  • 32H30
Trendmd