Acta mathematica scientia,Series A ›› 2023, Vol. 43 ›› Issue (5): 1397-1408.
Previous Articles Next Articles
Chen Fei1,*(),Wang Shuai1(),Zhao Yongye2(),Wang Chuanbao1()
Received:
2022-08-15
Revised:
2023-04-10
Online:
2023-10-26
Published:
2023-08-09
Contact:
Fei Chen
E-mail:feichenstudy@163.com;shuai172021@163.com;yongyezhao@163.com;wcb1216@163.com
Supported by:
CLC Number:
Chen Fei,Wang Shuai,Zhao Yongye,Wang Chuanbao. Time Decay Rate for Large-Solution About 3D Compressible MHD Equations[J].Acta mathematica scientia,Series A, 2023, 43(5): 1397-1408.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Chen Y H, Huang J C, Xu H Y. Global stability of large solutions of the 3-D compressible magnetohydrodynamic equations. Nonlinear Anal: Real World Appl, 2019, 47: 272-290
doi: 10.1016/j.nonrwa.2018.11.001 |
[2] |
Wang S, Chen F, Wang C B. Estimation of decay rates to large-solutions of 3D compressible magnetohydrodynamic system. J Math Phys, 2022, 63: 111507
doi: 10.1063/5.0096472 |
[3] |
Wang W J, Wen H Y. Global well-posedness and time-decay estimates for compressible Navier-Stokes equations with reaction diffusion. Sci China Math, 2022, 65: 1199-1228
doi: 10.1007/s11425-020-1779-7 |
[4] |
Fan J S, Yu W H. Strong solution to the compressible magnetohydrodynamic equations with vacuum. Nonlinear Anal: Real World Appl, 2009, 10(1): 392-409
doi: 10.1016/j.nonrwa.2007.10.001 |
[5] |
Vol'pert A I, Hudjaev S I. On the Cauchy problem for composite systems of nonlinear equations. Math USSR-Sb, 1972, 16(4): 517
doi: 10.1070/SM1972v016n04ABEH001438 |
[6] |
Hong G Y, Hou X F, Peng H Y, Zhu C J. Global existence for a class of large solutions to three-dimensional compressible magnetohydrodynamic equations with vacuum. SIAM J Math Anal, 2017, 49(4): 2409-2441
doi: 10.1137/16M1100447 |
[7] |
Wang D H. Large solutions to the initial-boundary value problem for planar magnetohydrodynamics. SIAM J Appl Math, 2003, 63(4): 1424-1441
doi: 10.1137/S0036139902409284 |
[8] |
Li H L, Xu X Y, Zhang J W. Global classical solutions to 3D compressible magnetohydrodynamic equations with large oscillations and vacuum. SIAM J Math Anal, 2013, 45(3): 1356-1387
doi: 10.1137/120893355 |
[9] |
Ducomet B, Feireisl E. The equations of magnetohydrodynamics: On the interaction between matter and radiation in the evolution of gaseous stars. Commun Math Phys, 2006, 266: 595-629
doi: 10.1007/s00220-006-0052-y |
[10] |
Hu X P, Wang D H. Global solutions to the three-dimensional full compressible magnetohydrodynamics flows. Commun Math Phys, 2008, 283: 255-284
doi: 10.1007/s00220-008-0497-2 |
[11] |
Hu X P, Wang D H. Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows. Arch Rational Mech Anal, 2010, 197(1): 203-238
doi: 10.1007/s00205-010-0295-9 |
[12] |
Liu S Q, Yu H B, Zhang J W. Global weak solutions of 3D compressible MHD with discontinuous initial data and vacuum. J Differ Equ, 2013, 254(1): 229-255
doi: 10.1016/j.jde.2012.08.006 |
[13] |
Suen A. Existence and uniqueness of low-energy weak solutions to the compressible 3D magnetohydrodynamics equations. J Differ Equ, 2019, 268(6): 2622-2671
doi: 10.1016/j.jde.2019.09.037 |
[14] |
Suen A, Hoff D. Global low-energy weak solutions of the equations of three-dimensional compressible magnetohydrodynamics. Arch Rational Mech Anal, 2012, 205: 27-58
doi: 10.1007/s00205-012-0498-3 |
[15] |
Wu G C, Zhang Y H, Zou W Y. Optimal time-decay rates for the 3D compressible magnetohydrodynamic flows with discontinuous initial data and large oscillations. J London Math Soc, 2021, 103(3): 817-845
doi: 10.1112/jlms.v103.3 |
[16] |
Bie Q Y, Wang Q R, Yao Z A. Global well-posedness of the 3D incompressible MHD equations with variable density. Nonlinear Anal: Real World Appl, 2019, 47: 85-105
doi: 10.1016/j.nonrwa.2018.10.008 |
[17] |
Chen F, Guo B L, Zhai X P. Global solution to the 3-D inhomogeneous incompressible MHD system with discontinuous density. Kinet Relat Mod, 2019, 12(1): 37-58
doi: 10.3934/krm.2019002 |
[18] |
Chen F, Li Y S, Xu H. Global solution to the 3D nonhomogeneous incompressible MHD equations with some large initial data. Discret Contin Dyn Syst, 2016, 36(6): 2945-2967
doi: 10.3934/dcdsa |
[19] |
Zhai X P, Li Y S, Yan W. Global well-posedness for the 3-D incompressible inhomogeneous MHD system in the critical Besov spaces. J Math Anal Appl, 2015, 432(1): 179-195
doi: 10.1016/j.jmaa.2015.06.048 |
[20] | Zhai X P, Li Y S, Yan W. Well-posedness for the three dimension magnetohydrodynamic system in the anisotropic Besov spaces. Acta Appl Math, 2016, 143(1): 1-13 |
[21] |
Chen Q, Tan Z. Global existence and convergence rates of smooth solutions for the compressible magnetohydrodynamic equations. Nonlinear Anal: Theory Methods Appl, 2010, 72(12): 4438-4451
doi: 10.1016/j.na.2010.02.019 |
[22] | Li F C, Yu H J. Optimal decay rate of classical solutions to the compressible magnetohydrodynamic equations. Proc Roy Soc Edinb Sect A Math, 2, 2011, 141(1): 109-126 |
[23] |
Zhang J W, Zhao J N. Some decay estimates of solutions for the 3-D compressible isentropic magnetohydrodynamics. Commun Math Sci, 2010, 8(4): 835-850
doi: 10.4310/CMS.2010.v8.n4.a2 |
[24] |
Gao J C, Chen Y H, Yao Z A. Long-time behavior of solution to the compressible magnetohydrodynamic equations. Nonlinear Anal: Theory Methods Appl, 2015, 128: 122-135
doi: 10.1016/j.na.2015.07.028 |
[25] |
Pu X K, Guo B L. Global existence and convergence rates of smooth solutions for the full compressible MHD equations. Z Angew Math Phys, 2013, 64: 519-538
doi: 10.1007/s00033-012-0245-5 |
[26] |
Gao J C, Tao Q, Yao Z A. Optimal decay rates of classical solutions for the full compressible MHD equations. Z Angew Math Phys, 2016, 67(2): 1-22
doi: 10.1007/s00033-015-0604-0 |
[27] |
Tan Z, Wang H Q. Optimal decay rates of the compressible magnetohydrodynamic equations. Nonlinear Anal: Real World Appl, 2013, 14(1): 188-201
doi: 10.1016/j.nonrwa.2012.05.012 |
[28] |
Huang W T, Lin X Y, Wang W W. Decay-in-time of the highest-order derivatives of solutions for the compressible isentropic MHD equations. J Math Anal Appl, 2021, 502(2): 125273
doi: 10.1016/j.jmaa.2021.125273 |
[29] |
Zhu L M, Zi R Z. Decay estimates of the smooth solution to the compressible magnetohydrodynamic equations on $\mathbb{T}^3$. J Differ Equ, 2021, 288: 1-39
doi: 10.1016/j.jde.2021.04.010 |
[30] |
Shi W X, Zhang J Z. A remark on the time-decay estimates for the compressible magnetohydrodynamic system. Appl Anal, 2021, 100(11): 2478-2498
doi: 10.1080/00036811.2020.1745779 |
[31] |
Wei R Y, Li Y, Guo B L. Global existence and convergence rates of solutions for the 3D compressible magnetohydrodynamic equations without heat conductivity. Appl Anal, 2020, 99(10): 1661-1684
doi: 10.1080/00036811.2018.1542687 |
[32] |
Gao J C, Wei Z Z, Yao Z A. Decay rate of strong solution for the compressible magnetohydrodynamic equations with large initial data. Appl Math Lett, 2020, 102: 106100
doi: 10.1016/j.aml.2019.106100 |
[33] |
王帅, 陈菲, 王传宝. 三维可压缩磁流体力学方程的重要估计. 理论数学, 2022, 12(8): 1305-1311
doi: 10.12677/PM.2022.128143 |
Wang S, Chen F, Wang C B. The important estimates for compressible MHD equations. Pure Mathematics, 2022, 12(8): 1305-1311
doi: 10.12677/PM.2022.128143 |
|