Acta mathematica scientia,Series A ›› 2023, Vol. 43 ›› Issue (4): 994-1002.
Previous Articles Next Articles
Zhang Jinyu(),Wang Dan,Geng Yong,Yang Miaomiao,Wang Xiaoli*()
Received:
2022-08-26
Revised:
2023-04-10
Online:
2023-08-26
Published:
2023-07-03
Contact:
Xiaoli Wang
E-mail:zhangjinyu0611@163.com;wxlspu@qlu.edu.cn
Supported by:
CLC Number:
Zhang Jinyu,Wang Dan,Geng Yong,Yang Miaomiao,Wang Xiaoli. The Integrability to a (1+1) Dimensional Variable Coefficient Complex Equation[J].Acta mathematica scientia,Series A, 2023, 43(4): 994-1002.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Li L, Duan C N, Yu F J. An improved Hirota bilinear method and new application for a nonlocal integrable complex modified Korteweg-de Vries (MKdV) equation. Phys Lett A, 2019, 383: 1578-1582
doi: 10.1016/j.physleta.2019.02.031 |
[2] |
Zhang Y P, Liu J, Wei G M. Lax pair, auto-Bäcklund transformation and conservation law for a generalized variable-coefficient KdV equation with external-force term. Appl Math Lett, 2015, 45: 58-63
doi: 10.1016/j.aml.2015.01.007 |
[3] |
Jia T T, Gao Y T, Yu X, et al. Lax pairs, infinite conservation laws, Darboux transformation, bilinear forms and solitonic interactions for a combined Calogero-Bogoyavlenskii-Schiff-type equation. Appl Math Lett, 2021, 114: 106702
doi: 10.1016/j.aml.2020.106702 |
[4] |
Lv X, Hua Y F, Chen S J, et al. Integrability characteristics of a novel (2+1)-dimensional nonlinear model: Painlevé analysis, soliton solutions, Bäcklund transformation, Lax pair and infinitely many conservation laws. Commun Nonlinear Sci, 2021, 95: 105612
doi: 10.1016/j.cnsns.2020.105612 |
[5] | Ablowitz M J, Clarkson P A. Soliton,Nonlinear Evolution Equations and Inverse Scatting. Cambridge: Cambridge University Press, 1991 |
[6] | Fang F, Hu B B, Zhang L. Inverse scattering transform for the generalized derivative nonlinear Schrödinger equation via matrix Riemann-Hilbert problem. Math Probl Eng, 2022: Article ID 3967328 |
[7] |
Butler S, Joshi N. An inverse scattering transform for the lattice potential KdV equation. Inverse Probl, 2010, 26: 115012
doi: 10.1088/0266-5611/26/11/115012 |
[8] | Gao X D, Zhang S. Inverse scattering transform for a new non-isospectral integrable non-linear AKNS model. Therm Sci, 2017, 21: S153-S160 |
[9] | 谷超豪, 胡和生, 周子翔. 孤立子理论中的达布变换及其几何应用. 上海: 上海科学技术出版社, 1999 |
Gu C H, Hu H S, Zhou Z X. Darboux Transformation in Soliton Theory and Geometric Application. Shanghai: Shanghai Science and Technology Press, 1999 | |
[10] |
Mikhailov A V, Papamikos G, Wang J P. Darboux transformation for the vector sine-Gordon equation and integrable equations on a sphere. Lett Math Phys, 2016, 106(7): 973-996
doi: 10.1007/s11005-016-0855-5 |
[11] |
Feng L L, Yu F J, Li L. Darboux transformation for coupled non-linear Schrödinger equation and its breather solutions. Z Naturforsch, 2016, 72(1): 1-7
doi: 10.1515/znb-2016-0178 |
[12] | Miura M R. Bäcklund Transformation. Berlin: Springer, 1978 |
[13] | Rogers C, Shadwick W F. Bäcklund Transformations and Their Applications. New York: Academic Press, 1982 |
[14] |
Huang Y. New no-traveling wave solutions for the Liouville equation by Bäcklund transformation method. Nonlinear Dynam, 2013, 72: 87-90
doi: 10.1007/s11071-012-0692-8 |
[15] |
Zeng Z F, Liu J G. Multiple soliton solutions, soliton-type solutions and hyperbolic solutions for the Benjamin-Bona-Mahony equation with variable coefficients in rotating fluids and one-dimensional transmitted waves. Int J Nonlin Sci Num, 2016, 17(5): 195-203
doi: 10.1515/ijnsns-2015-0122 |
[16] |
Wu H L, Chen Q Y, Song J F. Bäcklund transformation, residual symmetry and exact interaction solutions of an extended (2+1)-dimensional Korteweg-de Vries equation. Appl Math Lett, 2022, 124: 107640
doi: 10.1016/j.aml.2021.107640 |
[17] |
Wei G M, Gao Y T, Hu W, et al. Painlevé analysis, auto-Bäcklund transformation and new analytic solutions for a generalized variable-coefficient Korteweg-de Vries(KdV) equation. Eur Phys J B, 2006, 53: 343-350
doi: 10.1140/epjb/e2006-00378-3 |
[18] |
Ma Y X, Tian B, Qu Q X, et al. Bäcklund transformations, kink soliton, breather- and travelling-wave solutions for a (3+1)-dimensional B-type Kadomtsev-Petviashvili equation in fluid dynamics. Chinese J Phys, 2021, 73: 600-612
doi: 10.1016/j.cjph.2021.07.001 |
[19] | Hirota R. The Direct Method in Soliton Theory. Berlin: Springer-verlag, 2004 |
[20] | 陈登远. 孤子引论. 北京: 科学出版社, 2006 |
Chen D Y. Soliton Theory. Beijing: Science Press, 2006 | |
[21] |
Shan W R, Yan T Z, Lv X, et al. Analytic study on the Sawada-Kotera equation with a nonvanishing boundary condition in fluids. Commun Nonlinear Sci Numer Simulat, 2013, 18: 1568-1575
doi: 10.1016/j.cnsns.2012.11.001 |
[22] | 许晓革, 张小媛, 孟祥花. Bell 多项式在变系数Gargner-KP方程中的应用. 量子电子学报, 2019, 33(6): 671-679 |
Xu X G, Zhang X Y, Meng X H. Application of Bell polynomials in variable-coefficient Gargner-KP equation. Chinese J Quantum Elect, 2019, 33(6): 671-679 | |
[23] |
Qin B, Tian B, Wang Y F, et al. Bell-polynomial approach and Wronskian determinant solutions for three sets of differential-difference nonlinear evolution equations with symbolic computation. Z Angew Math Phys, 2017, 68: 111
doi: 10.1007/s00033-017-0853-1 |
[24] |
Tang Y N, Yuen M W, Zhang L J. Double Wronskian solutions to the (2+1)-dimensional Broer-Kaup-Kupershmidt equation. Appl Math Lett, 2020, 105: 106285
doi: 10.1016/j.aml.2020.106285 |
[25] |
Bell E T. Exponential polynomials. Ann Math, 1934, 35: 258-277
doi: 10.2307/1968431 |
[26] | Gilson C, Lambert F, Nimmo J, et al. On the combinatorics of the Hirota D-operators. Proceedings Roya Soci London Seri A-MPS, 1996, 452(1945): 223-234 |
[27] |
Pelinovsky D, Springael J, Lambert F, et al. On modified NLS, Kaup and NLBq equations: differential transformations and bilinearization. J Phys A: Math Gen, 1997, 30(24): 8705-8717
doi: 10.1088/0305-4470/30/24/029 |
[28] |
Wang H, Xia T C. Bell polynomial approach to an extended Korteweg-de Vries equation. Math Meth Appl Sci, 2013, 37(10): 1476-1487
doi: 10.1002/mma.2908 |
[29] |
Fan E G, Chow K W. Darboux covariant Lax pairs and infinite conservation laws of the (2+1)-dimensional breaking soliton equation. J Math Phys, 2011, 52: 023504
doi: 10.1063/1.3545804 |
[30] |
Hon Y C, Fan E G. Binary Bell polynomial approach to the non-isospectral and variable-coefficient KP equations. Ima J Appl Math, 2012, 77: 236-251
doi: 10.1093/imamat/hxr023 |
[31] |
Fan E G. The integrability of nonisospectral and variable-coefficient KdV equation with binary Bell polynomials. Phys Lett A, 2011, 375: 493-497
doi: 10.1016/j.physleta.2010.11.038 |
[32] |
Li M, Xiao J H, Yan T Z, et al. Integrability and soliton interaction of a resonant nonlinear Schrödinger equation via binary Bell polynomials. Nonlinear Anal-Real, 2013, 14: 1669-1679
doi: 10.1016/j.nonrwa.2012.11.003 |
[33] |
Hu X R, Chen Y. A direct procedure on the integrability of nonisospectral and variable-coefficient mkdv equation. J Nonlinear Math Phy, 2012, 19: 16-26
doi: 10.1142/S1402925112500027 |
[34] | 郝晓红, 程智龙. 一类广义浅水波KdV方程的可积性研究. 数学物理学报, 2019, 39A(3): 451-460 |
Hao X H, Cheng Z L. The integrability of the KdV-Shallow Water Waves equation. Acta Math Sci, 2019, 39A(3): 451-460 | |
[35] | Li Y H, Li R M, Xue B, et al. A generalized complex mKdV equation: Darboux transformations and explicit solutions. Wave Motion, 2020, 98: 102639 |
[36] |
Zha Q L, Li Z B. Darboux transformation and multi-solitons for complex mKdV equation. Chinese Phys Lett, 2008, 25: 8-11
doi: 10.1088/0256-307X/25/1/003 |
[37] |
Zha Q L. Nth-order rogue wave solutions of the complex modified Korteweg-de Vries equation. Phys Scripta, 2013, 87: 065401
doi: 10.1088/0031-8949/87/06/065401 |
[38] |
Lu D C, Seadawy A, Arshada M. Applications of extended simple equation method on unstable nonlinear Schrödinger equations. Optik, 2017, 140: 136-144
doi: 10.1016/j.ijleo.2017.04.032 |
[39] | 高静. 扩展KP方程的周期波解以及可积性质. 潍坊学院学报, 2015, 15(2): 1-6 |
Gao J. Strong stability of non-autonomous system with respect to partial variables. J Weifang Univ, 2015, 15(2): 1-6 | |
[40] | 罗天琦, 黄欣. Bell多项式在(2+1)维Nizhnik方程组中的应用. 四川师范大学学报(自然科学版), 2015, 38(6): 861-866 |
Luo T Q, Huang X. Bell Polynomials application in (2+1)-dimensional Nizhnik equations. J Sichuan Norm Univ (Nat Sci), 2015, 38(6): 861-866 |
[1] | Xiaohong Hao,Zhilong Cheng. The Integrability of the KdV-Shallow Water Waves Equation [J]. Acta mathematica scientia,Series A, 2019, 39(3): 451-460. |
[2] | Bai Xirui. Prolongation Structures of Generalized Coupled Equation [J]. Acta mathematica scientia,Series A, 2018, 38(4): 658-670. |
[3] | GUO Xiu-Rong, HU Mei-Yan. Two Integrable Systems and Reductions [J]. Acta mathematica scientia,Series A, 2014, 34(5): 1304-1312. |
[4] | Zhou Ruguang. A Method to Seek the Finite-Band Solution of Soliton Equation [J]. Acta mathematica scientia,Series A, 1998, 18(2): 228-234. |