Acta mathematica scientia,Series A ›› 2023, Vol. 43 ›› Issue (4): 1255-1268.
Previous Articles Next Articles
Received:
2022-04-06
Revised:
2022-09-13
Online:
2023-08-26
Published:
2023-07-03
Contact:
Jian Li
E-mail:jianli@sust.edu.cn
Supported by:
CLC Number:
Zeng Jiyao,Li Jian. An Adaptive Discontinuous Finite Volume Element Method for the Cahn-Hilliard Equation[J].Acta mathematica scientia,Series A, 2023, 43(4): 1255-1268.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Bi C J, Liu M M. A discontinuous finite volume element method for second-order elliptic problems. Numerical Methods for Partial Differential Equations, 2012, 28(2): 425-440
doi: 10.1002/num.v28.2 |
[2] |
Cahn J W, Hilliard J E. Free energy of a nonuniform system I: Interfacial free energy. The Journal of Chemical Physics, 1958, 28(2): 258-267
doi: 10.1063/1.1744102 |
[3] |
Chou H S, Ye X. Unified analysis of finite volume methods for second order elliptic problems. Siam Journal on Numerical Analysis, 2007, 45: 1639-1653
doi: 10.1137/050643994 |
[4] |
Feng X, Karakashian O A. Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn-Hilliard equation of phase transition. Mathematics of computation, 2007, 76(259): 1093-1117
doi: 10.1090/S0025-5718-07-01985-0 |
[5] |
Feng X B, Prohl A. Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits. Mathematics of Computation, 2004, 73(246):541-567
doi: 10.1090/mcom/2004-73-246 |
[6] |
Jia Z. Discovering phase field models from image data with the pseudo-spectral physics informed neural networks. Communications on Applied Mathematics and Computation, 2021, 3(2): 357-369
doi: 10.1007/s42967-020-00105-2 |
[7] |
Kumar S, Ruiz-Baier R. Equal order discontinuous finite volume element methods for the Stokes problem. Journal of Scientific Computing, 2015, 65(3): 956-978
doi: 10.1007/s10915-015-9993-7 |
[8] |
Li R, Gao Y L, Chen J, et al. Discontinuous finite volume element method for a coupled Navier-Stokes-Cahn-Hilliard phase field model. Advances in Computational Mathematics, 2020, 46(2): 1-35
doi: 10.1007/s10444-020-09758-2 |
[9] |
Liu H L, Yin P M. Unconditionally energy stable discontinuous Galerkin schemes for the Cahn-Hilliard equation. Journal of Computational and Applied Mathematics, 2021, 390: 113375
doi: 10.1016/j.cam.2020.113375 |
[10] |
Shen J, Yang X F. Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete and Continuous Dynamical Systems, 2010, 28: 1669-1691
doi: 10.3934/dcds.2010.28.1669 |
[11] |
Shen J, Yang X F, Yu H J. Efficient energy stable numerical schemes for a phase field moving contact line model. Journal of Computational Physics, 2015, 284: 617-630
doi: 10.1016/j.jcp.2014.12.046 |
[12] |
Ye X. A new discontinuous finite volume method for elliptic problems. SIAM Journal on Numerical Analysis, 2004, 42(3): 1062-1072
doi: 10.1137/S0036142902417042 |
[13] | 叶兴德, 程晓良. Cahn-Hilliard 方程的拟谱逼近. 数学物理学报, 2002, 22A(2): 270-280 |
Ye X D, Cheng X L. Legendre collocation approximation for Cahn-Hilliard equation. Acta Mathematica Scientia, 2002, 22A(2): 270-280 | |
[14] |
Zhang Z R, Qiao Z H. An adaptive time-stepping strategy for the Cahn-Hilliard equation. Communications in Computational Physics, 2012, 11(4): 1261-1278
doi: 10.4208/cicp.300810.140411s |
[1] | Wang Yang,Li Jian,Li Yi,Qin Yi. Analysis of a New Time Filter Algorithm for the Unsteady Stokes/Darcy Model [J]. Acta mathematica scientia,Series A, 2023, 43(3): 829-854. |
[2] | Jian Mangmang, Zheng Supei, Feng Jianhu, Zhai Mengqing. Well-Balanced Preserving of Entropy Stable Schemes for Shallow Water Equations [J]. Acta mathematica scientia,Series A, 2023, 43(2): 491-504. |
[3] | Yuan Huang,Yue Zhi,Tong Kang,Ran Wang,Hong Zhang. Fully Discrete Finite Element Scheme for a Nonlinear Induction Heating Problem [J]. Acta mathematica scientia,Series A, 2022, 42(4): 1238-1255. |
[4] | Yiming Luo,Dingfang Li,Min Liu,Jian Dong. Moving-Water Equilibria Preserving Central Scheme for the Saint-Venant System [J]. Acta mathematica scientia,Series A, 2022, 42(3): 891-903. |
[5] | Haiyun Deng,Hui Liu,Wenjing Song. Finite Difference Scheme for the Nonhomogeneous Initial Boundary Value Problem of Critical Schrödinger Map [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1311-1322. |
[6] | Supei Zheng,Xia Xu,Jianhu Feng,Dou Jia. High Order Sign Preserving Entropy Stable Schemes [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1296-1310. |
[7] | Keyan Wang,Qisheng Wang. Error Estimates for Expanded Mixed Finite Element Methods for Nonlinear Hyperbolic Equation [J]. Acta mathematica scientia,Series A, 2021, 41(2): 468-478. |
[8] | Zhihao Ge,Ruihua Li. Numerical Methods for the Critical Temperature and Gap Solution of Bogoliubov-Tolmachev-Shirkov Model [J]. Acta mathematica scientia,Series A, 2020, 40(6): 1699-1711. |
[9] | Xiaolong Zhao,Meilan Qiu,Xijun Yu,Fang Qing,Shijun Zou. A Second-Order RKDG Method for Lagrangian Compressible Euler Equations on Unstructured Triangular Meshes [J]. Acta mathematica scientia,Series A, 2020, 40(5): 1354-1361. |
[10] | Qin Zhou,Yin Yang. Adaptive Mesh Method for Solving a Second-Order Hyperbolic Equation [J]. Acta mathematica scientia,Series A, 2019, 39(4): 942-950. |
[11] | Jian Dong. Research on the Application of Central Scheme in Saint-Venant System [J]. Acta mathematica scientia,Series A, 2019, 39(2): 372-385. |
[12] | Zhihao Ge,Yuanyuan Ge. Multigrid Uzawa-Type Mixed Finite Element Methods for Nearly Incompressible Linear Elasticity Problem [J]. Acta mathematica scientia,Series A, 2018, 38(5): 873-882. |
[13] | Ge Zhihao, Cao Jiwei. A New Absolutely Stable hp Discontinuous Galerkin Methodfor the Reaction-Diffusion Problem [J]. Acta mathematica scientia,Series A, 2018, 38(2): 385-394. |
[14] | Chen Hongbin, Gan Siqing, Xu Da, Peng Yulong. A Formally Second-Order BDF Compact ADI Difference Scheme for the Two-Dimensional Fractional Evolution Equation [J]. Acta mathematica scientia,Series A, 2017, 37(5): 976-992. |
[15] | Chen Chuanjun, Zhang Xiaoyan, Zhao Xin. A Two-Grid Finite Volume Element Approximation for One-Dimensional Nonlinear Parabolic Equations [J]. Acta mathematica scientia,Series A, 2017, 37(5): 962-975. |