Acta mathematica scientia,Series A ›› 2023, Vol. 43 ›› Issue (4): 1179-1196.
Previous Articles Next Articles
Peng Qingqing1,2(),Zhang Zhifei1,2,*()
Received:
2022-04-26
Revised:
2023-02-06
Online:
2023-08-26
Published:
2023-07-03
Contact:
Zhifei Zhang
E-mail:pengqq@hust.edu.cn;zhangzf@hust.edu.cn
CLC Number:
Peng Qingqing,Zhang Zhifei. Global Attractor for a Coupled System of Wave and Euler-Bernoulli Plate Equation with Boundary Weak Damping[J].Acta mathematica scientia,Series A, 2023, 43(4): 1179-1196.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Aliev A B, Farhadova Y M. Existence of global attractors for the coupled system of suspension bridge equations. Azerbaijan Journal of Mathematics, 2021, 11(2): 105-124 |
[2] | Barbu V. Nonlinear Semigroups and Differential Equations in Banach Spaces. Bucuresti: Editura Academiei, 1976 |
[3] |
Bucci F, Chueshov I, Lasiecka I. Global attractor for a composite system of nonlinear wave and plate equations. Communications on Pure and Applied Analysis, 2007, 6: 113-140
doi: 10.3934/cpaa.2007.6.113 |
[4] | Bucci F, Chueshov I. Long time dynamics of a coupled system of nonlinear wave and thermoelastic plate equations. Arxiv preprint arxiv: 0806.4500, 2008 |
[5] |
Chen B Y, Zhao C X, Zhong C K. The global attractor for the wave equation with nonlocal strong damping. Discrete and Continuous Dynamical Systems-B, 2021, 26(12): 6207-6228
doi: 10.3934/dcdsb.2021015 |
[6] |
Chueshov I, Eller M, Lasiecka I. On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation. Commun PDE, 2002, 27(9/10): 1901-1951
doi: 10.1081/PDE-120016132 |
[7] |
Chueshov I, Eller M, Lasiecka I. Finite dimensionality of the attractor for a semilinear wave equation with nonlinear boundary dissipation. Communications in Partial Differential Equations, 2005, 29(11/12): 1847-1876
doi: 10.1081/PDE-200040203 |
[8] | Chueshov I, Lasiecka I. Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping. Providence: Memoirs of the American Mathematical Society, 2008 |
[9] |
Feireisl E. Global attractors for semilinear damped wave equations with supercritical exponent. Journal of Differential Equations, 1995, 116(2): 431-447
doi: 10.1006/jdeq.1995.1042 |
[10] | Ghidaglia J M, Temam R. Regularity of the solutions of second order evolution equations and their attractors. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 1987, 14(3): 485-511 |
[11] | Grisvard P. Caractérisation de quelques espaces interpolation. Archive for Rational Mechanics 1967, 25(1): 40-63 |
[12] |
Guo Y X, Yao P F. Stabilization of Euler-Bernoulli plate equation with variable coefficients by nonlinear boundary feedback. Journal of Mathematical Analysis and Applications, 2006, 317(1): 50-70
doi: 10.1016/j.jmaa.2005.12.006 |
[13] | Hale J K. Asymptotic Behavior of Dissipative Systems. Providence: American Mathematical Soc, 2010 |
[14] | Haraux A. Two remarks on dissipative hyperbolic problems. Research Notes in Mathematics, 1985, 122: 161-179 |
[15] |
Lasiecka I, Triggiani R. Uniform stabilization of the wave equation with dirichlet or neumann feedback control without geometrical conditions. Applied Mathematics and Optimization, 1992, 25(2): 189-224
doi: 10.1007/BF01182480 |
[16] | Lasiecka I, Triggiani R, Yao P F. Carleman estimates for a plate equation on a riemann manifold with energy level terms. Analysis and Applications-ISAAC, 2001, 2003: 199-236 |
[17] | Lions J, Magenes E. Non-Homogeneous Boundary Value Problems and Applications. Berlin: Springer Science and Business Media, 2012 |
[18] | Qin Y M. Nonlinear Parabolic-Hyperbolic Coupled Systems and Their Attractors. Berlin: Springer Science and Business Media, 2008 |
[19] |
Simon J. Compact sets in the space $L^p([0,T];B)$. Annali di Matematica pura ed applicata, 1986, 146(1): 65-96
doi: 10.1007/BF01762360 |
[20] | Song W J, Yang G S. Existence of the global attractor to fractional order generalized coupled nonlinear schrodinger equations with derivative. Boundary Value Problems, 2018, 109(2018): 1-27 |
[21] | Temam R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Berlin: Springer Science and Business Media, 2012 |
[22] |
Triggiani R, Yao P F. Carleman estimates with no lower-order terms for general riemann wave equations. global uniqueness and observability in one shot. Applied Mathematics and Optimization, 2002, 46(2): 331-375
doi: 10.1007/s00245-002-0751-5 |
[23] | Wang J C, Yao P F. On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation. Communications on Pure and Applied Analysis, 2021, 21(6): 1-15 |
[24] | Wu H, Shen C L, Yu Y L. An Introduction to Riemannian Geometry. Beijing: Univ of Beijing, 1989 |
[25] |
Yao P F. Observability inequalities for shallow shells. SIAM Journal on Control and Optimization, 2000, 38(6): 1729-1756
doi: 10.1137/S0363012999338692 |
[26] | Yao P F. Modeling and Control in Vibrational and Structural Dynamics:a Differential Geometric Approach. Boca Raton: CRC Press, 2011 |
[27] |
Zhao C X, Zhao C Y, Zhong C K. The global attractor for a class of extensible beams with nonlocal weak damping. Discrete and Continuous Dynamical Systems-B, 2020, 25(3): 935-955
doi: 10.3934/dcdsb.2019197 |
[1] |
Zhu Kaixuan, Sun Tao, Xie Yongqin.
Global Attractors for a Class of Reaction-Diffusion Equations with Distribution Derivatives in |
[2] | Xiangyu Xiao,Zhilin Pu. The Global Attractors of Cahn-Hilliard-Brinkman System [J]. Acta mathematica scientia,Series A, 2022, 42(4): 1027-1040. |
[3] | Didi Hu,Xuan Wang. The Strong Time-Dependent Global Attractors for the Non-Damping Abstract Evolution Equations with Fading Memory [J]. Acta mathematica scientia,Series A, 2019, 39(1): 81-94. |
[4] | Xiaoming Peng,Xiaoxiao Zheng,Yadong Shang. Global Attractors for a Fourth Order Pseudo-Parabolic Equation with Fading Memory [J]. Acta mathematica scientia,Series A, 2019, 39(1): 114-124. |
[5] | Xuan Wang, Ying Han, Chenghua Gao. Global Attractor in H1(Rn) x Lu2(R+;H1(Rn)) for the Nonclassical Diffusion Equations with Fading Memory [J]. Acta mathematica scientia,Series A, 2018, 38(6): 1205-1223. |
[6] | Liu Shifang, Ma Qiaozhen. Existence of Strong Global Attractors for Damped Suspension Bridge Equations with History Memory [J]. Acta mathematica scientia,Series A, 2017, 37(4): 684-697. |
[7] | Geng Fan, Li Ruizhai, Ge Xiangyu. Long Time Behavior of Boussinesq Type Equation with Damping Term [J]. Acta mathematica scientia,Series A, 2016, 36(6): 1196-1210. |
[8] | Ma Qiaozhen, Xu Ling, Zhang Yanjun. Asymptotic Behavior of the Solution for the Nonclassical Diffusion Equations with Fading Memory on the Whole Space R3 [J]. Acta mathematica scientia,Series A, 2016, 36(1): 36-48. |
[9] | Zhang Yanjun, Ma Qiaozhen. Attractors for the Nonclassical Diffusion Equations with Critical Nonlinearity on the Whole Space R3 [J]. Acta mathematica scientia,Series A, 2015, 35(2): 294-305. |
[10] | MA Wen-Jun, MA Qiao-Zhen, GAO Pei-Ming. Regularity and Global Attractor of Nonlinear Elastic Rod Oscillation Equation [J]. Acta mathematica scientia,Series A, 2014, 34(2): 445-453. |
[11] | YANG Zhi-Jian, CHENG Jian-Ling. Asymptotic Behavior of Solutions to the Kirchhoff Type Equation [J]. Acta mathematica scientia,Series A, 2011, 31(4): 1008-1021. |
[12] | Ma Qiaozhen; Sun Chunyou; Zhong Chengkui. Existence of Strong Global Attractors for the Nonlinear Beam Equations [J]. Acta mathematica scientia,Series A, 2007, 27(5): 941-948. |
[13] | LI Dong-Long, GUO Bai-Ling. Global Attractor for Complex Ginzburg Landau\=Equation in Whole R\+3 [J]. Acta mathematica scientia,Series A, 2004, 4(5): 607-617. |
[14] | SHANG Ya-Dong, GUO Bo-Ling. The Global Attractors for the Periodic Initial Value Problem for Dissipative Generalized Symmetric Regularized Long Wave Equations [J]. Acta mathematica scientia,Series A, 2003, 23(6): 745-757. |