[1] |
Sottinen T, Viitasaari L. Parameter estimation for the Langevin equation with stationary-increment Gaussian noise. Stat Inference Stoch Process, 2018, 21(3): 569-601
doi: 10.1007/s11203-017-9156-6
|
[2] |
Douissi S, Es-Sebaiy K, Kerchev G, Nourdin I. Berry-Esseen bounds of second moment estimators for Gaussian processes observed at high frequency. Electron J Statist, 2022, 16(1): 636-670
|
[3] |
Hu Y, Nualart D, Zhou H. Parameter estimation for fractional Ornstein-Uhlenbeck processes of general Hurst parameter. Statistical Inference for Stochastic Processes, 2019, 22(1): 111-142
doi: 10.1007/s11203-017-9168-2
|
[4] |
Jolis M. On the Wiener integral with respect to the fractional Brownian motion on an interval. Journal of Mathematical Analysis and Applications, 2007, 330(2): 1115-1127
doi: 10.1016/j.jmaa.2006.07.100
|
[5] |
Chen Y, Li Y. Berry-Esséen bound for the parameter estimation of fractional Ornstein-Uhlenbeck processes with the hurst parameter H∈(0,12). Communications in Statistics-Theory and Methods, 2021, 50(13): 2996-3013
doi: 10.1080/03610926.2019.1678641
|
[6] |
Kim Y T, Park H S. Optimal Berry-Esséen bound for statistical estimations and its application to SPDE. Journal of Multivariate Analysis, 2017, 155: 284-304
doi: 10.1016/j.jmva.2017.01.006
|
[7] |
Chen Y, Zhou H. Parameter estimation for an Ornstein-Uhlenbeck process driven by a general gaussian noise. Acta Mathematica Scientia, 2021, 41B(2): 573-595
|
[8] |
Chen Y, Gu X M, Li Y. Parameter estimation for an Ornstein-Uhlenbeck processes driven by a general Gaussian noise with Hurst parameter H∈(0,12). arXiv preprint arXiv:2111.15292, 2021
|
[9] |
Cheridito P, Kawaguchi H, Maejima M. Fractional Ornstein-Uhlenbeck processes. Electron J Probab, 2003, 8(3): 1-14
|
[10] |
Hu Y, Nualart D. Parameter estimation for fractional Ornstein-Uhlenbeck processes. Statistics & Probability Letters, 2010, 80(11/12): 1030-1038
|
[11] |
Chen Y, Kuang N H, Li Y. Berry-Esséen bound for the parameter estimation of fractional Ornstei-Uhlenbeck processes. Stochastics and Dynamics, 2020, 20(4): 2050023
doi: 10.1142/S0219493720500239
|
[12] |
Mishura Y S. Stochastic Calculus for Fractional Brownian Motion and Related Processes. Berlin: Springer-Verlag, 2008
|
[13] |
Pipiras V, Taqqu M S. Integration questions related to fractional Brownian motion. Probability Theory and Related Fields, 2000, 118(2): 251-291
doi: 10.1007/s440-000-8016-7
|
[14] |
Nualart D. The Malliavin Calculus and Related Topics. Berlin: Springer, 2006
|
[15] |
Tao T. An Introduction to Measure Theory. Providence: American Mathematical Society, 2011
|
[16] |
Chen Y, Ding Z, Li Y. Berry-Esséen bounds and almost sure CLT for the quadratic variation of a class of Gaussian process. Communications in Statistics-Theory and Methods, 2023: 1-20
|