Acta mathematica scientia,Series A ›› 2023, Vol. 43 ›› Issue (3): 713-732.
Previous Articles Next Articles
Received:
2022-04-11
Revised:
2022-10-19
Online:
2023-06-26
Published:
2023-06-01
Contact:
Shuhong Chen
E-mail:shiny0320@163.com
Supported by:
CLC Number:
Chen Shuhong,Tan Zhong. Gradient Regularity of Very Weak Solution to Elliptic Equations with Singular Convection[J].Acta mathematica scientia,Series A, 2023, 43(3): 713-732.
[1] |
Acerbi E, Fusco N. A regularity theorem for minimizers of quasiconvex variational integrals. Arch Ration Mech Anal, 1987, 99: 261-281
doi: 10.1007/BF00284509 |
[2] |
Acerbi E, Mingione G, Seregin G A. Regularity results for parabolic systems related to a class of non-Newtonian fluids. Ann Inst H Poincare Anal Non Lineaire, 2004, 21: 25-60
doi: 10.4171/aihpc |
[3] |
Almgren F J. Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure. Annals of Math, 1968, 87: 321-391
doi: 10.2307/1970587 |
[4] |
Chen S, Tan Z. The method of A-harmonic approximation and optimal interior partial regularity for nonlinear elliptic systems under the controllable growth condition. J Math Anal Appl, 2007, 335: 20-42
doi: 10.1016/j.jmaa.2007.01.042 |
[5] | Duzaar F, Grotowski J F. Partial regularity for nonlinear elliptic systems: The method of A-harmonic approximation. Manu Mat, 2000, 103: 267-298 |
[6] |
Duzaar F, Mingione G. Second order parabolic systems, optimal regularity, and singular sets of solutions. Ann Inst H Poincare Anal Non Lineaire, 2005, 22: 705-751
doi: 10.4171/aihpc |
[7] | 徐明月, 赵才地,Tomas C. 三维不可压Navier-Stokes方程组轨道统计解的退化正则性. 数学物理学报, 2021, 41A(2): 336-345 |
Xu M Y, Zhao C D, Tomas C. Degenerate regularity of trajectory statistical solutions for the 3D incompressible Navier-Stokes equations. Acta Math Sci, 2021, 41A(2): 336-345 | |
[8] | 张雅楠, 闫硕, 佟玉霞. 自然增长条件下的非齐次A -调和方程弱解的梯度估计. 数学物理学报, 2020, 40A(2): 379-395 |
Zhang Y N, Yan S, Tong Y X. Gradient estimates for weak solutions to non-homogeneous -harmonic equations under natural growth. Acta Math Sci, 2020, 40A(2): 379-395 | |
[9] |
邹维林, 任远春, 肖美萍. 系数的![]() ![]() |
Zou W L, Ren Y C, Xiao M P. Regularizing effect of ![]() ![]() |
|
[10] |
Porretta A. Weak solutions to Fokker equations and mean field games. Arch Ration Mech Anal, 2015, 216(1): 1-62
doi: 10.1007/s00205-014-0799-9 |
[11] | Bocccardo L. Quelques problemes de Dirichlet avec donnees dans de grands espaces de Sobolev. C R Acad Sci Paris Ser I Math, 1997, 325(12): 1267-1272 |
[12] | Carozza M, Moscariello G, Passarelli D N A. Nonlinear equations with growth coefficients in BMO. Houston J Math, 2002, 28(4): 917-929 |
[13] |
Fiorenza A, Sbordone C. Existence and uniqueness results for solutions of nonlinear equations with right hand side in ![]() ![]() doi: 10.4064/sm-127-3-223-231 |
[14] | Boccardo L. Some developments on Dirichlet problems with discontinuous coefficients. Boll Unione Mat Ital, 2009, 92: 285-297 |
[15] | Moscariello G. Existence and uniqueness for elliptic equations with lower-order terms. Adv Calc Var, 2011, 4(4): 421-444 |
[16] |
Zecca G. Existence and uniqueness for nonlinear elliptic equations with lower-order terms. Nonlinear Anal, 2012, 75(2): 899-912
doi: 10.1016/j.na.2011.09.022 |
[17] | Greco L, Moscariello G, Zecca G. Regularity for solutions to nonlinear elliptic equations. Differential Integral Equations, 2013, 26(9/10): 1105-1113 |
[18] |
Radice T, Zecca G. Existence and uniqueness for nonlinear elliptic equations with unbounded coefficients. Ric Mat, 2014, 63(2): 355-367
doi: 10.1007/s11587-014-0202-z |
[19] |
Greco L, Moscariello G, Zecca G. Very weak solutions to elliptic equations with singular convection term. J Math Anal Appl, 2018, 457(2): 1376-1387
doi: 10.1016/j.jmaa.2017.03.025 |
[20] |
Iwaniec T, Migliaccio L, Nania L, et al. Integrability and removability results for quasiregular mappings in high dimensions. Math Scand, 1994, 75: 263-279
doi: 10.7146/math.scand.a-12519 |
[21] | Campanato S. Proprieta di Holderianita di alcune classi di funzioni. Ann Sc Norm Sup Pisa Ser III, 1963, 17: 175-188 |
[22] |
Campanato S. Equazioni ellittiche del ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
[23] | Giaquinta M. Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Ann Math Stud. Princeton: Princeton Univ Press, 1983, 105 |
[24] |
Greco L, Iwaniec T, Sbordone C. Inverting the ![]() doi: 10.1007/BF02678192 |
[25] |
O'Neil R. Convolution operators and ![]() ![]() ![]() ![]() ![]() ![]() |
[1] | Yuxia Tong,Xinru Wang,Jiantao Gu. Lϕ-Type Estimates for Very Weak Solutions of A-Harmonic Equation in Orlicz Spaces [J]. Acta mathematica scientia,Series A, 2020, 40(6): 1461-1480. |
[2] | Du Guangwei, Niu Pengcheng. Higher Integrability for Very Weak Solutions of Obstacle Problems to Nonlinear Subelliptic Equations [J]. Acta mathematica scientia,Series A, 2017, 37(1): 122-145. |
[3] | ZHENG Shen-Zhou, WANG Xi-Fen. Regularity of Very Weak Solutions for a Class of Quasilinear Subelliptic Equations [J]. Acta mathematica scientia,Series A, 2010, 30(2): 432-439. |
[4] | GAO Hong-Ya, WANG Hong-Min, GU Guang-Ze. Weak Monotonicity for the Component Functions of |Weak Solutions of Beltrami System [J]. Acta mathematica scientia,Series A, 2009, 29(3): 651-655. |
[5] | JIN Yong-Yang, DAI Xin-Rong. The Continuity of the Solution for a Class of Degenerate Schrodinger Equations [J]. Acta mathematica scientia,Series A, 2004, 24(2): 238-245. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 171
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 91
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|