[1]孔德兴, 陈韵梅, 董芳芳, 等. 医学图像处理中的数学理论与方法. 北京: 科学出版社, 2014. Kong D X, Chen Y M, Dong F F, et al. Mathematical Theory and Methods in Medical Image Processing. Beijing: Science Press, 2014.
[2]Li J N, Shi Y G, Tran G, et al. Fast local trust region technique for diffusion tensor registration using exact reorientation and regularization. IEEE Transactions on Medical Imaging, 2013, 33(5): 1005-1022.
[3]Maes F, Collignon A, Vandermeulen D, et al. Multimodality image registration by maximization of mutual information. IEEE Transactions on Medical Imaging, 1997, 16(2): 187-198.
[4]Maes F, Vandermeulen D, Suetens P. Medical image registration using mutual information. Proceedings of the IEEE, 2003, 91(10): 1699-1722.
[5]Van Hecke W, Leemans A, D'Agostino E, et al. Nonrigid coregistration of diffusion tensor images using a viscous fluid model and mutual information. IEEE Transactions on Medical Imaging, 2007, 26(11): 1598-1612.
[6] Chung A, Wells W M, Norbash A, et al. Multi-modal image registration by minimising kullback-leibler distance. International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Berlin, Heidelberg, 2002: 525-532.
[7] Pickering M R. A new similarity measure for multi-modal image registration. 2011 18th IEEE International Conference on Image Processing, 2011: 2273-2276.
[8]Shi J L, Chen Y M, Rao M, et al. A statistical similarity measure for non-rigid multi-modal image registration. Medical Imaging 2010: Image Processing. SPIE, 2010, 7623: 72-83.
[9]Evans L C. Partial differential equations. American Mathematical Soc., 2010.
[10]Zhang J, Chen K, Yu B. A novel high-order functional based image registration model with inequality constraint. Computers and Mathematics with Applications, 2016, 72(12): 2887-2899.
[11]Han H, Wang Z P. A diffeomorphic image registration model with fractional-order regularization and Cauchy-Riemann constraint. SIAM Journal on Imaging Sciences, 2020, 13(3): 1240-1271.
[12]Han H, Wang A D. A fast multi grid algorithm for 2D diffeomorphic image registration model. Journal of Computational and Applied Mathematics, 2021, 394: 113576.
[13] Modin K, Nachman A, Rondi L. A multiscale theory for image registration and nonlinear inverse problems. Advances in Mathematics, 2019, 346: 1009-1066.
[14] Han H, Wang Z P, Zhang Y M. Multi-scale approach for two-dimensional diffeomorphic image registration. Multiscale Modeling and Simulation, 2021, 19(4): 1538-1572.
[15]Rényi A. On measures of dependence. Acta mathematica hungarica, 1959, 10(3-4): 441-451.
[16]Aubert G, Kornprobst P, Aubert G. Mathematical problems in image processing: partial differential equations and the calculus of variations. New York: Springer, 2006.
[17] Lombaert H. Diffeomorphic log demons image registration. MATLAB Central File Exchange, 2012. https://www.mathworks.com/matlabcentral/fileexchange/39194-diffeomorphic-log-demons-image-registration.
[18]Vercauteren T, Pennec X, Perchant A, et al. Diffeomorphic demons: Efficient non-parametric image registration. NeuroImage, 2009, 45(1): S61-S72.
[19]Pock T, Urschler M, Zach C, et al. A duality based algorithm for TV-L1-optical-flow image registration. International Conference on Medical Image Computing and Computer-assisted Intervention. Springer, Berlin, Heidelberg, 2007: 511-518.
[20]Qin C, Shi B, Liao R, et al. Unsupervised deformable registration for multi-modal images via disentangled representations. International Conference on Information Processing in Medical Imaging. Springer, Cham, 2019: 249-261.
[21]Klein A, Kroon D J, Hoogeveen Y, et al. Multimodal image registration by edge attraction and regularization using a B-spline grid. Medical Imaging 2011: Image Processing. SPIE, 2011, 7962: 632-639.
[22]Kroon D J. Multimodality non-rigid demon algorithm image registration. Matlab Central, 2008. https://www.mathworks.com/matlabcentral/fileexchange/21451-multimodality-non-rigid-demon-algorithm-image-registration.
[23]Kroon D J, Slump C H. MRI modalitiy transformation in demon registration. 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro. IEEE, 2009: 963-966.
[24] Huang W, Yang H, Liu X F, et al. A coarse-to-fine deformable transformation framework for unsupervised multi-contrast MR image registration with dual consistency constraint. IEEE Transactions on Medical Imaging, 2021, 40(10): 2589-2599. |