Acta mathematica scientia,Series A
Tian-Fang ZOU1,Zhao Caidi2
Received:
2022-10-26
Revised:
2023-03-01
Published:
2023-04-12
Contact:
Zhao Caidi
Tian-Fang ZOU Zhao Caidi. Statistical solutions and Kolmogorov entropy for first-order lattice systems in weighted spaces[J].Acta mathematica scientia,Series A, , (): 0-0.
\bibitem{1FP} Foias C, Prodi G. Sur les solutions statistiques des \'equations de Naiver-Stokes. Ann Mat Pur Appl, 1976, {\bf 111}: 307-330 \bibitem{2FMRT} Foias C, Manley O, Rosa R, Temam R. Navier-Stokes Equations and Turbulence. Cambridge: Cambridge University Press, 2001 \bibitem{3VF} Vishik M, Fursikov A. Translationally homogeneous statistical solutions and individual solutions with infinite energy of a system of Navier-Stokes equations. Siberian Math J, 1978, {\bf 19}: 710-729 \bibitem{4CG} Chekroun M, Glatt-Holtz N. Invariant measures for dissipative dynamical systems: abstract results and applications. Commun Math Phys, 2012, {\bf 316}(3): 723-761 \bibitem{5LR} {\L}ukaszewicz G, Robinson J C. Invariant measures for non-autonomous dissipative dynamical systems. Discrete Cont Dyn Syst, 2014, \textbf{34}: 4211-4222 \bibitem{6W} Wang X. Upper-semicontinuity of stationary statistical properties of dissipative systems. Discrete Cont Dyn Syst, 2009, \textbf{23}: 521-540 \bibitem{7BMR} Bronzi A, Mondaini C, Rosa R. Trajectory statistical solutions for three-dimensional Navier-Stokes-like systems. SIAM J Math Anal, 2014, {\bf 46}: 1893-1921 \bibitem{8BMR} Bronzi A, Mondaini C, Rosa R. Abstract framework for the theory of statistical solutions. J Differ Equations, 2016, {\bf 260}: 8428-8484 \bibitem{9ZLC} Zhao C, Li Y, Caraballo T. Trajectory statistical solutions and Liouville type equations for evolution equations: Abstract results and applications. J Differ Equations, 2020, \textbf{269}: 467-494 \bibitem{10JZ} Jiang H, Zhao C. Trajectory statistical solutions and Liouville type theorem for nonlinear wave equations with polynomial growth. Adv Differential Equ, 2021, {\bf 26}(3/4): 107-132 \bibitem{11ZC} Zhao C, Caraballo T. Asymptotic regularity of trajectory attractor and trajectory statistical solution for the 3D globally modified Navier-Stokes equations. J Differ Equations, 2019, {\bf 266}: 7205-7229 \bibitem{12ZLL} Zhao C, Li Y, {\L}ukaszewicz G. Statistical solution and partial degenerate regularity for the 2D non-autonomous magneto-micropolar fluids. Z Angew Math Phys, 2020, \textbf{71}: 1-24 \bibitem{13ZLS} Zhao C, Li Y, Sang Y. Using trajectory attractor to construct trajectory statistical solution for the 3D incompressible micropolar flows. Z Angew Math Mech, 2020, \textbf{100}: e201800197 \bibitem{14ZSC} Zhao C, Song Z, Caraballo T. Strong trajectory statistical solutions and Liouville type equation for dissipative Euler equations. Appl Math Lett, 2020, \textbf{99}: 105981 \bibitem{15ZLS} Zhao C, Li Y, Song Z. Trajectory statistical solutions for the 3D Navier-Stokes equations: The trajectory attractor approach. Nonlinear Anal-RWA, 2020, \textbf{53}: 103077 \bibitem{16ZWC} Zhao C, Wang J, Caraballo T. Invariant sample measures and random Liouville type theorem for the two-dimensional stochastic Navier-Stokes equations. J Differ Equations, 2022, \textbf{317}: 474-494 \bibitem{17CP} Carrol T, Pecora L. Synchronization in chaotic systems. Phys Rev Lett, 1990, {\bf 64}: 821-824 \bibitem{18CMV} Chow S N, Mallet-Paret J, Van Vleck E S. Pattern formation and spatial chaos in spatially discrete evolution equations. Rand Comp Dyn, 1996, {\bf 4}: 109-178 \bibitem{19CY} Chua L O, Yang L. Cellular neural networks: Theory. IEEE Trans Circ Syst, 1988, {\bf 35}: 1257-1272 \bibitem{20CY} Chua L O, Yang L. Cellular neural networks: Applications. IEEE Trans Circ Syst, 1988, {\bf 35}: 1273-1290 \bibitem{21TG} Erneux T, Nicolis G. Propagating waves in discrete bistable reaction diffusion systems. Physica D, 1993, {\bf 67}: 237-244 \bibitem{22W} Wang B. Dynamics of systems on infinite lattices. J Differ Equations, 2006, \textbf{221}: 224-245 \bibitem{23ZS} Zhou S, Shi W. Attractors and dimension of dissipative lattice systems. J Differ Equations, 2006, \textbf{224}: 172-204 \bibitem{24W} Wang B. Asymptotic behavior of non-autonomous lattice systems. J Math Anal Appl, 2007, \textbf{331}: 121-136 \bibitem{26ZZ} Zhao X, Zhou S. Kernel sections for processes and nonautonomous lattice systems. Discrete Cont Dyn Syst-B, 2008, \textbf{9}: 763-785 \bibitem{27ZZ} Zhou S, Zhao C. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Commun Pure Appl Anal, 2007, \textbf{21}: 1087-1111 \bibitem{28ZZ} Zhao C, Zhou S. Attractors of retarded first order lattice systems. Nonlinearity, 2007, \textbf{20}: 1987-2006 \bibitem{29HSZ} Han X, Shen W, Zhou S. Random attractors for stochastic lattice dynamical systems in weighted spaces. J Differ Equations, 2011, \textbf{250}: 1235-1266 \bibitem{30ZZ} Zhao C, Zhou S. Sufficient conditions for the existence of global random attractors for stochastic lattice dynamical systems and applications. J Math Anal Appl, 2009, \textbf{354}: 78-95 \bibitem{31Z} Zhou S. Random exponential attractor for cocycle and application to non-autonomous stochastic lattice systems with multiplicative white noise. J Differ Equations, 2017, \textbf{263}: 2247-2279 \bibitem{33AYA} Abdallah A Y. Uniform exponential attractors for first order non-autonomous lattice dynamical systems. J Differ Equations, 2011, \textbf{251}: 1489-1504 \bibitem{34} 赵才地, 周盛凡. 格点系统存在指数吸引子的充分条件及应用. 数学学报, 2010, \textbf{53}: 233-242 \\ Zhao C, Zhou S. Sufficient conditions for the existence of exponential attractor for lattice system. Acta Math Sin, 2010, \textbf{53}: 233-242 \bibitem{35ZH} Zhou S, Han X. Pullback exponential attractors for non-autonomous lattice systems. J Dyn Differ Equ, 2012, \textbf{24}(3): 601-631 \bibitem{36WZ} Wang Z, Zhou S. Existence and upper semicontinuity of attractors for non-autonomous stochastic lattice FitzHugh-Nagumo systems in weighted spaces. Adv Differ Equ, 2016, \textbf{2016}(1): 1-20 \bibitem{37HK} Han X, Kloeden P E. Pullback and forward dynamics of nonautonomous Laplacian lattice systems on weighted spaces. Discrete Cont Dyn Syst-S, 2022, {\bf 15}(10): 2909-2927 \bibitem{38AAAW} Abdallah A Y, {\it et al}. Dynamics of non-autonomous first order lattice systems in weighted spaces. J Math Phys, 2022, \textbf{63}, 102703: doi: 10.1063/5.0090227 \bibitem{39LSZ} 李永军, 桑燕苗, 赵才地. 一阶格点系统的不变测度与Liouville型方程. 数学物理学报, 2020, \textbf{40(A)}: 328-339 \\ Li Y, Sang Y, Zhao C. Invariant measures and Liouville type theorem for fisrt-order lattice system. Acta Math Sci, 2020, \textbf{40(A)}: 328-339 \bibitem{40ZXL} Zhao C, Xue G, {\L}ukaszewicz G. Pullabck attractors and invariant measures for the discrete Klein-Gordon-Schr\"odinger equatios. Discrete Cont Dyn Syst-B, 2018, \textbf{23}: 4021-4044 \bibitem{41CLR} Carvalho A, Langa J A, Robinson J C. Attractors for infinite-dimensional non-autonomous dynamical systems. New York: Springer, 2013 \bibitem{43LGM} Lorentz G G, Golitschek M, Makovoz Y. Constructive approximation: advanced problems. Berlin: Springer, 1996 |
[1] | Jie Cao,Lan Huang,Keqin Su. The Convergence of Pullback Attractors for Navier-Stokes Equations with Weak Damping [J]. Acta mathematica scientia,Series A, 2022, 42(4): 1173-1185. |
[2] | Caidi Zhao,Huite Jiang,Chunqiu Li,Caraballo Tomás. Statistical Solutions and Its Limiting Behavior for the Impulsive Discrete Ginzburg-Landau Equations [J]. Acta mathematica scientia,Series A, 2022, 42(3): 784-806. |
[3] | Mingyue Xu,Caidi Zhao,Caraballo Tomás. Degenerate Regularity of Trajectory Statistical Solutions for the 3D Incompressible Navier-Stokes Equations [J]. Acta mathematica scientia,Series A, 2021, 41(2): 336-344. |
[4] | Xiaoming Peng,Xiaoxiao Zheng,Yadong Shang. Pullback Attractors for Navier-Stokes-Voigt Equations with Nonlinear Damping [J]. Acta mathematica scientia,Series A, 2021, 41(2): 357-369. |
[5] | Qiaoyi Xiao,Chunqiu Li. Invariant Borel Probability Measures for the Discrete Three Component Reversible Gray-Scott Model [J]. Acta mathematica scientia,Series A, 2021, 41(2): 523-537. |
[6] | Kaixuan Zhu,Yongqin Xie,Feng Zhou,Xijun Deng. Pullback Attractors for the Complex Ginzburg-Landau Equations with Delays [J]. Acta mathematica scientia,Series A, 2020, 40(5): 1341-1353. |
[7] | Yongjun Li,Yanmiao Sang,Caidi Zhao. Invariant Measures and Liouville Type Equation for First-Order Lattice System [J]. Acta mathematica scientia,Series A, 2020, 40(2): 328-339. |
[8] | Feng Baowei, Su Keqin. Uniform Decay for a Fourth-Order Viscoelastic Equation with Density in Rn [J]. Acta mathematica scientia,Series A, 2018, 38(1): 122-133. |
[9] | Wang Yonghai, Qin Yuming. Upper Semicontinuity of Pullback Attractors for Nonclassical Diffusion Equations in H01(Ω) [J]. Acta mathematica scientia,Series A, 2016, 36(5): 946-957. |
[10] | Yang Xinguang, Zhao Mingxia, Hou Wei. Upper Semi-Continuity of Pullback Attractors for the 2D Non-Autonomous Navier-Stokes Equations with Weak Damping [J]. Acta mathematica scientia,Series A, 2016, 36(4): 722-739. |
[11] | LIANG Yun-Yun, LI Chu-Jin, HAO Cai-Di. Compact Kernel Sections and Kolmogorov Entropy for the Lattice Zakharov Equations with a Quantum Correction [J]. Acta mathematica scientia,Series A, 2014, 34(5): 1203-1218. |
[12] | YANG Xin-Bo, ZHAO Cai-De, JIA Xiao-Lin. The Uniform Attractor and Entropy of the Autonomous Coupled Nonlinear SchrÖdinger Equations on Infinite Lattices [J]. Acta mathematica scientia,Series A, 2013, 33(4): 636-645. |
[13] | WANG Xiao-Hu, LI Shu-Yong. Pullback Attractors for Non-autonomous 2D Navier-Stokes Equations with Linear Dampness in Some Unbounded Domains [J]. Acta mathematica scientia,Series A, 2009, 29(4): 873-881. |
|