Acta mathematica scientia,Series A ›› 2023, Vol. 43 ›› Issue (1): 82-92.
Previous Articles Next Articles
Zhu Kaixuan1,*(),Sun Tao1(
),Xie Yongqin2(
)
Received:
2021-10-12
Revised:
2022-08-05
Online:
2023-02-26
Published:
2023-03-07
Supported by:
CLC Number:
Zhu Kaixuan, Sun Tao, Xie Yongqin. Global Attractors for a Class of Reaction-Diffusion Equations with Distribution Derivatives in
[1] |
Alikakos A D. An application of the invariance principle to reaction-diffusion equations. J Differential Equations, 1979, 33: 201-225
doi: 10.1016/0022-0396(79)90088-3 |
[2] | Babin A V, Vishik M I. Attractors of Evolution Equations. Amsterdam: North-Holland, 1992 |
[3] | Brezis H. Functional Analysis, Sobolev Spaces and Partial Differential Equations. New York: Springer, 2011 |
[4] |
Cao D M, Sun C Y, Yang M H. Dynamics for a stochastic reaction-diffusion equation with additive noise. J Differential Equations, 2015, 259: 838-872
doi: 10.1016/j.jde.2015.02.020 |
[5] | Cholewa J W, Dlotko T. Global Attractors in Abstract Parabolic Problems. Cambridge: Cambridge university Press, 2000 |
[6] | Hale J K. Asymptotic Behavior of Dissipative Systems. Providence: American Mathematival Society, 1988 |
[7] | Lions J L. Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Paris: Dunod, 1969 |
[8] |
Marion M. Attractors for reactions-diffusion equations: existence and estimate of their dimension. Appl Anal, 1987, 25: 101-147
doi: 10.1080/00036818708839678 |
[9] |
Marion M. Approximate inertial manifolds for reaction-diffusion equations in high space dimension. J Dynamic Differential Equations, 1989, 1: 245-267
doi: 10.1007/BF01053928 |
[10] | Robinson J C. Infinite-Dimensional Dynamical Systems:An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors. Cambridge: Cambridge University Press, 2001 |
[11] |
Sun C Y, Yuan L L, Shi J C. Higher-order integrability for a semilinear reaction-diffusion equation with distribution derivatives in ![]() doi: 10.1016/j.aml.2013.04.010 |
[12] |
Sun C Y, Yuan Y B. ![]() ![]() doi: 10.1017/S0308210515000177 |
[13] |
Sun C Y, Zhong C K. Attractors for the semilinear reaction-diffusion equation with distribution derivatives in unbounded domains. Nonlinear Anal, 2005, 63: 49-65
doi: 10.1016/j.na.2005.04.034 |
[14] | Temam R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics. New York: Springer, 1997 |
[15] |
Wang B. Attractors for reaction-diffusion equations in unbounded domains. Physica D, 1999, 128: 41-52
doi: 10.1016/S0167-2789(98)00304-2 |
[16] |
Xiao Y P, Sun C Y. Higher-order asymptotic attraction of pullback attractors for a reaction-diffusion equation in non-cylindrical domains. Nonlinear Anal, 2015, 113: 309-322
doi: 10.1016/j.na.2014.10.012 |
[17] |
Xie Y Q, Li Q S, Huang C X, Jiang Y J. Aattractors for the semilinear reaction-diffusion equation with distribution derivatives. J Math Phys, 2013, 54(9): 092701
doi: 10.1063/1.4818983 |
[18] |
Zhang J, Zhong C K. The existence of global attractors for a class of reaction-diffusion equations with distribution derivatives terms in ![]() doi: 10.1016/j.jmaa.2015.02.024 |
[19] |
Zhong C K, Yang M H, Sun C Y. The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations. J Differential Equations, 2006, 223: 367-399
doi: 10.1016/j.jde.2005.06.008 |
[20] |
Zhu K X, Zhou F. Continuity and pullback attractors for a non-autonomous reaction-diffusion equation in ![]() doi: 10.1016/j.camwa.2016.04.004 |
[1] | Liu Shifang, Ma Qiaozhen. Existence of Strong Global Attractors for Damped Suspension Bridge Equations with History Memory [J]. Acta mathematica scientia,Series A, 2017, 37(4): 684-697. |
[2] | Yang Wenbin, Wu Jianhua. Some Dynamics in Spatial Homogeneous and Inhomogeneous Activator-Inhibitor Model [J]. Acta mathematica scientia,Series A, 2017, 37(2): 390-400. |
[3] | Wang Gang, Tang Yanbin. Exponential Attractors for Reaction-Diffusion Equations in H2(Ω) and L2P-2(Ω) [J]. Acta mathematica scientia,Series A, 2015, 35(4): 641-650. |
[4] | Liu Jiang, Zhu Lintao, Lin Zhigui. An SEI Epidemic Diffusive Model and Its Moving Front [J]. Acta mathematica scientia,Series A, 2015, 35(3): 604-617. |
[5] | LI Yu-Huan, ZHOU Jun, MU Chun-Lai. Stability Analysis for a Predator-Prey System with Nonlocal Delayed Reaction-diffusion Equations [J]. Acta mathematica scientia,Series A, 2012, 32(3): 475-488. |
[6] | Xie Qiangjun; Zhang Guangxin; Zhou Zekui. The Existence of Positive Periodic Solutions for a Kind of Periodic Reaction-diffusion Equations [J]. Acta mathematica scientia,Series A, 2009, 29(2): 465-474. |
[7] | Ma Qiaozhen; Sun Chunyou; Zhong Chengkui. Existence of Strong Global Attractors for the Nonlinear Beam Equations [J]. Acta mathematica scientia,Series A, 2007, 27(5): 941-948. |
[8] | SHANG Ya-Dong, GUO Bo-Ling. The Global Attractors for the Periodic Initial Value Problem for Dissipative Generalized Symmetric Regularized Long Wave Equations [J]. Acta mathematica scientia,Series A, 2003, 23(6): 745-757. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 141
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 86
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|