Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (6): 1611-1618.
Previous Articles Next Articles
Received:
2022-02-09
Online:
2022-12-26
Published:
2022-12-16
Contact:
Yaru Qi
E-mail:qiyaru@imut.edu.cn
Supported by:
CLC Number:
Rui Hua,Yaru Qi. The Essential Spectrum of a Class of Anti-Triangular Operator Matrices[J].Acta mathematica scientia,Series A, 2022, 42(6): 1611-1618.
1 |
Massatt P . Limiting behavior for strongly damped nonlinear wave equations. J Differ Equ, 1983, 48 (3): 334- 349
doi: 10.1016/0022-0396(83)90098-0 |
2 |
Huang F L . On the mathematical model for linear elastic systems with analytic damping. SIAM J Control Optim, 1988, 26 (3): 714- 724
doi: 10.1137/0326041 |
3 | Griniv R O , Shkalikov A A . Exponential stability of semigroups related to operator models in mechanics. Math Notes, 2003, 73 (5): 618- 624 |
4 |
Weiss G , Tucsnak M . How to get a conservative well-posed linear system out of thin air. Part Ⅱ. Controllability and stability. SIAM J Control Optim, 2003, 42 (3): 907- 935
doi: 10.1137/S0363012901399295 |
5 | Bátkai A , Engel K J . Exponential decay of 2 × 2 operator matrix semigroups. J Comput Anal Appl, 2004, 6 (2): 153- 163 |
6 |
邱汶汶, 齐雅茹. 一类无界算子的二次数值域和谱. 数学物理学报, 2020, 40A (6): 1420- 1430
doi: 10.3969/j.issn.1003-3998.2020.06.002 |
Qiu W W , Qi Y R . The quadratic numerical range and the spectrum of some unbounded block operator matrices. Acta Math Sci, 2020, 40A (6): 1420- 1430
doi: 10.3969/j.issn.1003-3998.2020.06.002 |
|
7 | Jacob B , Trunk C . Location of the spectrum of operator matrices which are associated to second order equations. Oper Matrices, 2007, 1 (1): 45- 60 |
8 |
Jacob B , Trunk C , Winklmeier M . Analyticity and riesz basis property of semigroups associated to damped vibrations. J Evol Equ, 2008, 8 (2): 263- 281
doi: 10.1007/s00028-007-0351-6 |
9 |
Jacob B , Trunk C . Spectrum and analyticity of semigroups arising in elasticity theory and hydromechanics. Semigroup Forum, 2009, 79 (1): 79- 100
doi: 10.1007/s00233-009-9148-y |
10 | Artamonov N V . Estimate of the decay exponent of an operator semigroup associated with a second-order linear differential equation. Math Notes, 2012, 91 (5/6): 731- 734 |
11 | Jacob B , Langer M , Tretter C . Variational principles for self-adjoint operator functions arising from second order systems. Oper Matrices, 2016, 10 (3): 501- 531 |
12 |
Jacob B , Tretter C , Trunk C , Vogt H . Systems with strong damping and their spectra. Math Methods Appl Sci, 2018, 41 (16): 6546- 6573
doi: 10.1002/mma.5166 |
13 |
Huang F L . Some problems for linear elastic systems with damping. Acta Math Sci, 1990, 10 (3): 319- 326
doi: 10.1016/S0252-9602(18)30405-3 |
14 | Mugnolo D. A variational approach to strongly damped wave equations//Amann W, Arendt M, Hieber I, Neubrander FM, Nicaise S, eds. Functional Analysis and Evolution Equations: The Günter Lumer Volume. Basel: Birkhäuser, 2008: 503-514 |
15 |
Francesca B . A dirichlet boundary contral problem for the strongly damped wave equation. SIAM J Control Optim, 1992, 30 (5): 1092- 1100
doi: 10.1137/0330058 |
16 | Chen S P , Liu K S , Liu Z Y . Spectrum and stability for elastic systems with global or local Kelvin-Voigt damping. SIAM J Appl Math, 1998, 50 (2): 651- 668 |
17 | Lasiecka I , Pandolfi L , Triggiani R . A singular control approach to highly damped second-order abstract equations and applications. Appl Math Optim, 1997, 36, 67- 107 |
18 | Weidmann J . Linear Operators in Hilbert Spaces. New York: Springer-Verlag, 1980 |
19 | Bognar J . Indefinite Inner Product Spaces. New York: Springer-Verlag, 1974 |
20 | 吴德玉, 阿拉坦仓. 分块算子矩阵谱理论及其应用. 北京: 科学出版社, 2013 |
Wu D Y , Alatancang . The Spectral Theory of Block Operator Matrices and Its Applications. Beijing: Science Press, 2013 | |
21 | Kato T . Perturbation Theory for Linear Operators. Berlin: Springer-Verlag, 1976 |
22 |
Hundertmark D , Lee Y R . Exponential decay of eigenfunctions and generalized eigenfunctions of a non-self-adjoint matrix Schrödinger operator related to NLS. Bull London Math Soc, 2007, 39 (5): 709- 720
doi: 10.1112/blms/bdm065 |
23 |
Azizov T Y , Jonas P , Trunk C . Spectral points of type π+ and π- of self-adjoint operators in Krein spaces. J Funct Anal, 2005, 226, 114- 137
doi: 10.1016/j.jfa.2005.03.009 |
[1] | Lin Li, Alatancang. Essential and Weyl Spectra of 2×2 Bounded Block Operator Matrices [J]. Acta mathematica scientia,Series A, 2019, 39(3): 431-440. |
[2] | Alatancang, HAI Guo-Jun. The Essential Spectrum for a Class of Infinite Dimensional Hamiltonian Operator and Its Applications [J]. Acta mathematica scientia,Series A, 2013, 33(5): 984-992. |
[3] |
Liu Wei; Sun Guozheng.
Generalization and Application of Super-Poincare Inequality on Lp-space [J]. Acta mathematica scientia,Series A, 2007, 27(5): 781-787. |
[4] | Lu Qun;Cao Guang Fu. Multiplication Operators in Orlicz Space [J]. Acta mathematica scientia,Series A, 2006, 26(1): 124-128. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 240
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 138
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|