Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (5): 1360-1380.
Previous Articles Next Articles
Received:
2022-01-22
Online:
2022-10-26
Published:
2022-09-30
Contact:
Meiqiang Feng
E-mail:18810392077@163.com;meiqiangfeng@sina.com
Supported by:
CLC Number:
Nan Deng,Meiqiang Feng. Positive Doubly Periodic Solutions To Telegraph Equations: Existence, Uniqueness, Multiplicity and Asymptotic Behavior[J].Acta mathematica scientia,Series A, 2022, 42(5): 1360-1380.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | Roussy G , Pearcy J A . Foundations and Industrial Applications of Microwaves and Radio Frequency Fields. New York: Wiley, 1995 |
2 | Barbu V . Nonlinear boundary value problems for a class of hyperbolic systems. Rev Roum Math Pures Appl, 1977, 22, 155- 168 |
3 |
Deng N , Feng M . New results of positive doubly periodic solutions to telegraph equations. Electron Res Arch, 2022, 30, 1104- 1125
doi: 10.3934/era.2022059 |
4 |
Li Y . Positive doubly periodic solutions of nonlinear telegraph equations. Nonlinear Anal, 2003, 55, 245- 254
doi: 10.1016/S0362-546X(03)00227-X |
5 |
Wang F , An Y . Existence and multiplicity results of positive doubly periodic solutions for nonlinear telegraph system. J Math Anal Appl, 2009, 349, 30- 42
doi: 10.1016/j.jmaa.2008.08.003 |
6 |
Wang F , An Y . Doubly periodic solutions to a coupled telegraph system. Nonlinear Anal, 2012, 75, 1887- 1894
doi: 10.1016/j.na.2011.09.039 |
7 |
Li Y . Maximum principles and the method of upper and lower solutions for time-periodic problems of the telegraph equations. J Math Anal Appl, 2007, 327, 997- 1009
doi: 10.1016/j.jmaa.2006.04.066 |
8 |
Ortega R , Robles-Pérez A M . A maximum principle for periodic solutions of the telegraph equations. J Math Anal Appl, 1998, 221, 625- 651
doi: 10.1006/jmaa.1998.5921 |
9 |
Mawhin J , Ortega R , Robles-Pérez A M . Maximum principles for bounded solutions of the telegraph equation in space dimensions two and three and applications. J Differential Equations, 2005, 208, 42- 63
doi: 10.1016/j.jde.2003.11.003 |
10 |
Mawhin J , Ortega R , Robles-Pérez A M . A maximum principle for bounded solutions of the telegraph equation in space dimension three. C R Acad Sci Paris Ser I, 2002, 334, 1089- 1094
doi: 10.1016/S1631-073X(02)02406-8 |
11 |
Mawhin J , Ortega R , Robles-Pérez A M . A maximum principle for bounded solutions of the telegraph equations and applications to nonlinear forcings. J Math Anal Appl, 2000, 251, 695- 709
doi: 10.1006/jmaa.2000.7038 |
12 |
Gilding B H , Kersner R . Wavefront solutions of a nonlinear telegraph equation. J Differential Equations, 2013, 254, 599- 636
doi: 10.1016/j.jde.2012.09.007 |
13 |
Hilbert D . Über die gerade Linie als küzeste Verbindung zweier Punkte. Math Ann, 1895, 46, 91- 96
doi: 10.1007/BF02096204 |
14 | Birkhoff G . Extensions of Jentzch's theorem. Trans Amer Math Soc, 1957, 85, 219- 227 |
15 |
Bushell P J . Hilbert's metric and positive contraction mappings in a Banach space. Arch Rational Mech Anal, 1973, 52, 330- 338
doi: 10.1007/BF00247467 |
16 | Feng M . Convex solutions of Monge-Ampère equations and systems: Existence, uniqueness and asymptotic behavior. Adv Nonlinear Anal, 2021, 10, 371- 399 |
17 |
Feng M , Zhang X . On a $ k $-Hessian equation with a weakly superlinear nonlinearity and singular weights. Nonlinear Anal, 2020, 190, 111601
doi: 10.1016/j.na.2019.111601 |
18 |
Zhang X , Feng M . The existence and asymptotic behavior of boundary blow-up solutions to the $ k $-Hessian equation. J Differential Equations, 2019, 267, 4626- 4672
doi: 10.1016/j.jde.2019.05.004 |
19 | Zhang X , Feng M . Boundary blow-up solutions to the Monge-Ampère equation: Sharp conditions and asymptotic behavior. Adv Nonlinear Anal, 2020, 9, 729- 744 |
20 |
Aviles P . On isolated singularities in some nonlinear partial differential equations. Indiana Univ Math J, 1983, 32, 773- 791
doi: 10.1512/iumj.1983.32.32051 |
21 |
Gidas B , Spruck J . Global and local behavior of positive solutions of nonlinear elliptic equations. Comm Pure Appl Math, 1981, 34, 525- 598
doi: 10.1002/cpa.3160340406 |
22 |
Amann H . Fixed point equations and nonlinear eigenvalue problems in order Banach spaces. SIAM Rev, 1976, 18, 620- 709
doi: 10.1137/1018114 |
23 | Guo D , Lakshmikantham V . Nonlinear Problems in Abstract Cones. New York: Academic Press, 1988 |
24 | 郭大钧. 非线性泛函分析. 山东: 山东科学技术出版社, 1985 |
Guo D J . Nonlinear Functional Analysis. Shandong: Shandong Science and Technology Press, 1985 | |
25 | Hardy G H , Littlewood J E , Pólya G . Inequalities. Second Edition. New York: Cambridge University Press, 1952 |
[1] | Xiangyu Xiao,Zhilin Pu. The Global Attractors of Cahn-Hilliard-Brinkman System [J]. Acta mathematica scientia,Series A, 2022, 42(4): 1027-1040. |
[2] | Tianling Gao,Li Xia,Mingjun Zhou,Yuanyuan Zhang. The Asymptotic Behavior of Total Variation Flow with the Non-Constant Data [J]. Acta mathematica scientia,Series A, 2022, 42(1): 157-164. |
[3] | Lihong Zhang,Zedong Yang,Guotao Wang,Dumitru Baleanu. Existence and Asymptotic Behavior of Solutions of a Class of k-Hessian Equation [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1357-1371. |
[4] | Jinguo Zhang,Dengyun Yang. Existence and Asymptotic Behavior of Solution for a Degenerate Elliptic Equation Involving Grushin-Type Operator and Critical Sobolev-Hardy Exponents [J]. Acta mathematica scientia,Series A, 2021, 41(4): 997-1012. |
[5] | Jie Wu,Hongxia Lin. The Global Solution and Asymptotic Behavior of Parabolic-Parabolic Keller-Segel Type Model [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1102-1114. |
[6] | Zhang Mingshu, Zhu Zheqi, Zhao Caidi. Determining Modes and Determining Nodes to the Fluid Flow of Ladyzhenskaya Model [J]. Acta mathematica scientia,Series A, 2018, 38(1): 71-82. |
[7] | Wang Shenghua, Cheng Guofei. The Asymptotic Behavior of the Solution in Structured Bacterial Population Model [J]. Acta mathematica scientia,Series A, 2018, 38(1): 156-167. |
[8] | Meng Xiaoying. Analysis of a Stochastic Delayed Epidemic Model with a Non-Monotonic Incidence Rate [J]. Acta mathematica scientia,Series A, 2017, 37(6): 1162-1175. |
[9] | Gao Xinchun, Zhou Jian, Tian Miaoqing. Global Boundedness and Asymptotic Behavior in an Attraction-Repulsion Chemotaxis System with Logistic Source [J]. Acta mathematica scientia,Series A, 2017, 37(1): 113-121. |
[10] | Xia Zhinan. On Existence and Asymptotic Behavior of Solutions for Functional Integral Equation of Volterra-Stieltjes Type [J]. Acta mathematica scientia,Series A, 2016, 36(1): 130-143. |
[11] | Lei Qian, Li Ning, Yang Han. Blow Up and Asymptotic Behavior in the Beam Equation [J]. Acta mathematica scientia,Series A, 2015, 35(4): 738-747. |
[12] |
SONG Hong-Li, GUO Zhen-Hua.
Existence of Global Strong Solutions and Interface Behavior of Solutions for 1D Compressible Navier-Stokes Equations with Free Boundary Value Problem [J]. Acta mathematica scientia,Series A, 2013, 33(4): 601-620. |
[13] | MAO Jian-Feng, LI Ye-Ping. Global Existence and Asymptotic Behavior of Smooth Solutions to the IBVP for the 3D Bipolar Euler-Poisson System [J]. Acta mathematica scientia,Series A, 2013, 33(3): 510-522. |
[14] | DAI Li-Mei, QIN Guo-Hong. Entire Solutions with Asymptotic Behavior of Hessian Quotient Equations [J]. Acta mathematica scientia,Series A, 2012, 32(3): 566-575. |
[15] | WEI Geng-Ping, SHEN Jian-Hua. Asymptotic Behavior for a Class of Nonlinear Impulsive Neutral Delay Differential Equations [J]. Acta mathematica scientia,Series A, 2010, 30(3): 753-763. |
|