Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (5): 1320-1331.
Previous Articles Next Articles
Received:
2021-08-12
Online:
2022-10-26
Published:
2022-09-30
Contact:
Kaisu Wu
E-mail:865066107@qq.com;wuks@mail.buct.edu.cn
Supported by:
CLC Number:
Yage Tong,Kaisu Wu. Spectral Analysis of the Main Operator of Rotenberg Equation with Time Delay Under Nonsmooth Boundary Conditions[J].Acta mathematica scientia,Series A, 2022, 42(5): 1320-1331.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Rotenberg M . Transport theory for growing cell populations. Journal of Theoretical Biology, 1983, 103, 181- 199
doi: 10.1016/0022-5193(83)90024-3 |
2 | 吴红星, 王胜华, 袁邓彬. 种群细胞增生中迁移算子的谱研究. 系统科学与数学, 2017, 37 (3): 940- 949 |
Wu H X , Wang S H , Yuan D B . The spectral research of transport operators arising in growing cell populations. Journal of Systems Science and Mathematical Sciences, 2017, 37 (3): 940- 949 | |
3 | Jeribi A , Megdiche H , Moalla N . On a transport operator arising in growing cell populations Ⅱ: Cauchy problem. Mathematical Methods in the Applied Sciences, 2005, 266, 70- 99 |
4 |
Boulanouar M . A mathematical study for a rotenberg model. Journal of Mathematical Analysis and Applications, 2002, 265, 371- 394
doi: 10.1006/jmaa.2001.7721 |
5 |
Lebowitz J L , Rubinow S I . A theory for the age and generation time distribution of a microbial population. Journal of Mathematical Biology, 1974, 1, 17- 36
doi: 10.1007/BF02339486 |
6 |
Piazzera S , Tonetto L . Asynchronous exponential growth for an age dependent population equation with delayed birth process. Journal of Evolution Equations, 2005, 5, 61- 77
doi: 10.1007/s00028-004-0159-6 |
7 |
Bai M , Xu S H . On a two-phase size-structured population model with infinite states-at-birth and distributed delay in birth process. Journal of Biological Dynamics, 2014, 8, 42- 56
doi: 10.1080/17513758.2014.899637 |
8 | 王胜华, 程国飞. 具结构化的细菌种群模型解的渐近行为. 数学物理学报, 2018, 38A (1): 156- 167 |
Wang S H , Cheng G F . The asymptotic behavior of the solution in structured bacterial population model. Acta Mathematica Scientia, 2018, 38A (1): 156- 167 | |
9 |
王胜华, 程国飞. 一类增生扩散型种群细胞中迁移方程的谱问题. 数学物理学报, 2013, 30A (1): 71- 77
doi: 10.3969/j.issn.1003-3998.2013.01.009 |
Wang S H , Cheng G F . Spectral problem of transport equations with a proliferating cell population. Acta Mathematica Scientia, 2013, 30A (1): 71- 77
doi: 10.3969/j.issn.1003-3998.2013.01.009 |
|
10 |
Lods B , Mokhtar-Kharroubi M . On the theory of a growing cell population with zero minimum cycle length. Journal of Mathematical Analysis and Applications, 2002, 266, 70- 99
doi: 10.1006/jmaa.2001.7712 |
11 |
王胜华, 吴红星. Rotenberg模型中一类迁移算子的谱分析. 数学物理学报, 2016, 36A (5): 821- 831
doi: 10.3969/j.issn.1003-3998.2016.05.002 |
Wang S H , Wu H X . Spectral analysis of a transport operators in rotenberg model. Acta Mathematica Scientia, 2016, 36A (5): 821- 831
doi: 10.3969/j.issn.1003-3998.2016.05.002 |
|
12 |
Latrach K . Compactness properties for perturbed semigroups and application to transport equation. Journal of the Australian Mathematical Society, 2000, 69 (1): 25- 40
doi: 10.1017/S1446788700001828 |
13 |
Latrach K , Mokhtar-Kharroubi M . On an unbounded linear operator arising in the theory of growing cell population. Journal of Mathematical Analysis and Applications, 1997, 211 (1): 273- 294
doi: 10.1006/jmaa.1997.5460 |
14 |
Van Neerven J M A M , Straub B , Weis L . On the asymptotic behaviour of a semigroup of linear operators. Indagationes Mathematicae, 1995, 6 (4): 453- 476
doi: 10.1016/0019-3577(96)81760-5 |
15 | Rudnicki R . Asymptotic behaviour of a transport equation. Annales Polonici Mathematici, 1992, 57 (1): 45- 55 |
16 | Dehici A , Jeribi A , Latrach K . Spectral analysis of a transport operator arising in growing cell populations. Acta Applicandae Mathematicae, 2006, 92, 37- 62 |
17 | 王胜华, 翁云芳, 阳名珠. 人体细胞增生中一类迁移算子的谱分析. 数学物理学报, 2010, 30A (4): 1055- 1061 |
Wang S H , Weng Y F , Yang M Z . Spectral problem of transport equations with a proliferating cell population. Acta Mathematica Scientia, 2010, 30A (4): 1055- 1061 | |
18 | 阳名珠. 线性迁移理论中各类本征值问题的研究. 山西大学学报, 1983, 4, 92- 106 |
Yang M Z . Study of vavious eigenvalue problems in linear transport theory. Journal of Shanxi University, 1983, 4, 92- 106 |
[1] | Tailei Zhang,Junli Liu,Mengjie Han. Dynamics of an Anthrax Epidemiological Model with Time Delay and Seasonality [J]. Acta mathematica scientia,Series A, 2022, 42(3): 851-866. |
[2] | Daoxiang Zhang,Ben Li,Dandan Chen,Yating Lin,Xinmei Wang. Hopf Bifurcation for a Fractional Differential-Algebraic Predator-Prey System with Time Delay and Economic Profit [J]. Acta mathematica scientia,Series A, 2022, 42(2): 570-582. |
[3] | Xiling Li,Fei Gao,Wenqin Li. Stability Analysis of Fractional-Order Hepatitis B Virus Infection Model With Immune Delay [J]. Acta mathematica scientia,Series A, 2021, 41(2): 562-576. |
[4] | Jian Liu,Zhixin Zhang,Wei Jiang. Global Mittag-Leffler Stability of Fractional Order Nonlinear Impulsive Differential Systems with Time Delay [J]. Acta mathematica scientia,Series A, 2020, 40(4): 1053-1060. |
[5] | Xiaomin Yang,Zhipeng Qiu,Ling Ding. Complex Dynamics of an Intraguild Predation Model [J]. Acta mathematica scientia,Series A, 2019, 39(4): 963-970. |
[6] | Haiyin Li. Hopf Bifurcation of Delayed Density-Dependent Predator-Prey Model [J]. Acta mathematica scientia,Series A, 2019, 39(2): 358-371. |
[7] | Lifei Zheng,Jie Guo,Meihua Wu,Xiaorui Wang,Aying Wan. The Research on a Class of the Predator-Prey-Mutualist System with Delays [J]. Acta mathematica scientia,Series A, 2018, 38(5): 1001-1013. |
[8] | Wang Shenghua, Wu Hongxing. Spectral Analysis of a Transport Operators in Rotenberg Model [J]. Acta mathematica scientia,Series A, 2016, 36(5): 821-831. |
[9] | Zhang Shuwen. A Stochastic Predator-Prey System with Time Delays and Prey Dispersal [J]. Acta mathematica scientia,Series A, 2015, 35(3): 592-603. |
[10] | Luo Ricai, Xu Honglei, Wang Wusheng. Globally Asymptotic Stability of A New Class of Neutral Neural Networks with Time-Varying Delays [J]. Acta mathematica scientia,Series A, 2015, 35(3): 634-640. |
[11] | JIANG Yu, MEI Li-Quan, SONG Xin-Yu, TIAN Wei-Jun, DING Xue-Mei. Analysis of an Impulsive Epidemic Model with Time Delays and Nonlinear Incidence Rate [J]. Acta mathematica scientia,Series A, 2012, 32(4): 670-684. |
[12] | WANG Sheng-Hua, WENG Yun-Fang, YANG Ming-Zhu. Spectrum Analysis of |Transport Operators in the Growing Cell Populations [J]. Acta mathematica scientia,Series A, 2010, 30(4): 1055-1061. |
[13] |
Wu Shiliang ;Li Wantong.
Stability and Traveling Fronts in Lotka-Volterra Cooperation Model with Stage Structure [J]. Acta mathematica scientia,Series A, 2008, 28(3): 454-464. |
[14] | Gui Zhanji; Jia Jing; Ge Weigao. Global Stability of Single-species Diffusion Models with Time Delay [J]. Acta mathematica scientia,Series A, 2007, 27(3): 496-505. |
[15] |
Gao Shujing ;Chen Lansun.
ermanence and Global Stability for Single-species Model with Three Life Stages and Time Delay |
|