Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (4): 1060-1073.
Previous Articles Next Articles
Received:
2021-08-17
Online:
2022-08-26
Published:
2022-08-08
Contact:
Na Wang
E-mail:1173934437@qq.com;wangna1621@126.com
Supported by:
CLC Number:
Hao Zhang,Na Wang. A Class of Weakly Nonlinear Critical Singularly Perturbed Integral Boundary Problems[J].Acta mathematica scientia,Series A, 2022, 42(4): 1060-1073.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 | 倪明康, 林武忠. 奇异摄动问题中的渐近理论. 北京: 高等教育出版社, 2009 |
Ni M K , Lin W Z . Asymptotic Theory for Singular Perturbed Problem. Beijing: Higher Education Press, 2009 | |
2 | Vasil'eva A B, Butuzov V F. Asymptotic Expansions of Solutions of Singularly Perturbed Equations[in Russian]. Moscow: Nauka, 1973 |
3 | 林宗池, 周明儒. 应用数学中的摄动方法. 江苏: 江苏教育报刊总社, 1995 |
Lin Z C , Zhou M R . Perturbation method in Applied Mathematics. Jiangsu: Jiangsu Education Newspapers and Periodicals Headquarters, 1995 | |
4 | Il'in A M. Matching of asymptotic expansions of solutions of boundary value problems. Translations of Mathematical Monographs, Vol 102. Providence: American Mathematical Society, 1992 |
5 | Vasil'eva A B , Butuzov V F . Singularly Perturbed Equations in the Critical Case. Madison: University of Wisconsin, 1980 |
6 |
Vasil'eva A B , Panteleeva O I . On a system of singularly perturbed second-order quasilinear ordinary differential equations in the critical cases. Computational Mathematics and Mathematical Physics, 2006, 46 (4): 563- 574
doi: 10.1134/S0965542506040051 |
7 |
Vasil'eva A B . On systems of two singularly perturbed quasilinear second-order equations. Journal of Mathematical Sciences, 2008, 150 (6): 2467- 2472
doi: 10.1007/s10958-008-0145-6 |
8 |
Wang N . A class of singularly perturbed delayed boundary value problem in the critical case. Advances in Difference Equations, 2015, 2015 (1): 1- 21
doi: 10.1186/s13662-014-0331-4 |
9 |
Amiraliyev G M , Akir M C . Numerical solution of the singularly perturbed problem with nonlocal boundary condition. Applied Mathematics and Mechanics, 2002, 23 (7): 755- 764
doi: 10.1007/BF02456971 |
10 |
Cakir M , Amiraliyev G M . A finite difference method for the singularly perturbed problem with nonlocal boundary condition. Applied Mathematics and Computation, 2005, 160 (2): 539- 549
doi: 10.1016/j.amc.2003.11.035 |
11 | 谢峰, 张莲. 具有积分边界条件的非线性二阶奇摄动问题. 华东师范大学学报(自然科学版), 2010, 1: 1- 5 |
Xie F , Zhang L . Nonlinear second-order singularly perturbed problems with integral boundary conditions. Journal of East China Normal University (Natural Science Edition), 2010, 1: 1- 5 | |
12 |
武利猛, 倪明康, 李素红, 等. 带有积分边界条件的奇异摄动边值问题的渐近解. 数学物理学报, 2020, 40A (5): 1192- 1203
doi: 10.3969/j.issn.1003-3998.2020.05.008 |
Wu L M , Ni M K , Li S H , et al. Asymptotic solutions of singularly perturbed boundary value problems with integral boundary conditions. Acta Mathematica Scientia, 2020, 40A (5): 1192- 1203
doi: 10.3969/j.issn.1003-3998.2020.05.008 |
|