Acta mathematica scientia,Series A ›› 2022, Vol. 42 ›› Issue (2): 502-519.

Previous Articles     Next Articles

Boundedness and Stabilization of a Chemotaxis Model Describing Tumor Invasion with Signal-Dependent Motility

Shijie Shi1,Zhengrong Liu2,Hui Zhao2,*()   

  1. 1 College of Big Data and Internet, Shenzhen Technology University, Guangdong Shenzhen 518118
    2 School of Mathematics, South China University of Technology, Guangzhou 510640
  • Received:2020-12-03 Online:2022-04-26 Published:2022-04-18
  • Contact: Hui Zhao E-mail:shishijie@sztu.edu.cn
  • Supported by:
    the NSFC(62172164);the NSFC(12026608);the NSFC(11971176);the NSFC(11901400)

Abstract:

In this paper, we study the following problem in a bounded domain $\Omega\subset\mathbb{R} ^n(1\leqq n\leqq 5)$ with smooth boundary and $\nu$ denotes the outward normal vector of $\partial \Omega$, where $0 <\gamma(v)\in C^3[0, \infty)$. Under suitably regular initial data, we show the existence of global classical solution with uniform-in-time bound under one of the following conditions$ \bullet\; 1\leq n\leq 3$,$ \bullet\; 4\leq n\leq 5$ and $\gamma_2\geq \gamma(v)\geq \gamma_1>0$,$\left|\gamma'(v)\right|\leq \gamma_3, $ $v\in [0, \infty)$ with some constants $\gamma_i>0\ (i=1, 2, 3)$.Moreover, we confirm that the solution $(u, v, w, z)$ will exponentially converge to the homogeneous equilibrium $(\bar{u}_0, \bar{v}_0+\bar{w}_0, 0, \bar{u}_0)$ as $t\rightarrow\infty$, where $\bar{u} _0: =\frac{1}{\left|\Omega\right|}\int_{\Omega}u_0{\rm d}x$, $\bar{v}_0: =\frac{1}{\left|\Omega\right|}\int_{\Omega}v_0{\rm d}x$ and $\bar{w}_0: =\frac{1}{\left|\Omega\right|}\int_{\Omega}w_0{\rm d}x$.

Key words: Chemotaxis model, Global existence, Large time behavior.

CLC Number: 

  • O175.2
Trendmd