1 |
Bucklew J A , Wise G L . Multidimensional asymptotic quantization with $r$th power distortion measures. IEEE Trans Inform Theory, 1982, 28 (2): 239- 247
doi: 10.1109/TIT.1982.1056486
|
2 |
Cawley R , Mauldin R D . Multifractal decompositions of Moran fractals. Adv Math, 1992, 92 (2): 196- 236
doi: 10.1016/0001-8708(92)90064-R
|
3 |
Elias P . Bouns and asymptotes for the performance of multivariate quantizers. Ann Math Stat, 1970, 41 (4): 1249- 1259
doi: 10.1214/aoms/1177696900
|
4 |
Feng D J , Wen Z Y , Wu J . Some dimensional results for homogeneous Moran sets. Sci China Ser A, 1999, 40 (5): 475- 482
|
5 |
Graf S, Luschgy H. Foundations of Quantization for Probability Distributions. Berlin: Springer-Verlag, 2000
|
6 |
Graf S , Luschgy H . Quantization for probability measures with respect to the geometric mean error. Math Proc Camb Phil Soc, 2004, 136 (3): 687- 717
doi: 10.1017/S0305004103007229
|
7 |
Graf S , Luschgy H , Pagès G . Distortion mismatch in the quantization of probability measures. ESAIM Probability and Statistics, 2008, 12: 127- 153
doi: 10.1051/ps:2007044
|
8 |
Graf S , Luschgy H , Pagès G . The local quantization behavior of absolutely continuous probabilities. Ann Probab, 2012, 40 (4): 1795- 1828
|
9 |
Gray R , Neuhoff D . Quantization. IEEE Trans Inform Theory, 1998, 44 (6): 2325- 2383
doi: 10.1109/18.720541
|
10 |
Hua S , Rao H , Wen Z Y , Wu J . On the structures and dimensions of Moran sets. Sci China Ser A, 2000, 43 (8): 836- 852
doi: 10.1007/BF02884183
|
11 |
Kesseböhmer M, Zhu S. Some recent developments in quantization of fractal measures//Bandt C, Falconer K, Z$\ddot{\rm a}$hle. Fractal Geometry and Stochastics V. Basel: Birkhäuser, 2015: 105-120
|
12 |
Kesseböhmer M , Zhu S . On the quantization for self-affine measures on Bedford-McMullen carpets. Mathematische Zeitschrift, 2016, 283 (1/2): 39- 58
|
13 |
Mihailescu E , Roychowdhury M K . Quantization coefficients in infinite systems. Kyoto J Math, 2015, 55 (4): 857- 873
|
14 |
Moran P A P . Additive functions of intervals and Hausdorff measure. Math Proc Camb Philos Soc, 1946, 42 (1): 15- 23
doi: 10.1017/S0305004100022684
|
15 |
Pötzelberger K . The quantization dimension of distributions. Math Proc Camb Phil Soc, 2001, 131 (3): 507- 519
doi: 10.1017/S0305004101005357
|
16 |
Roychowdhury M K , Snigireva N . Asymptotic of the geometric mean error in the quantization of recurrent self-similar measures. J Math Anal Appl, 2015, 431 (2): 737- 751
doi: 10.1016/j.jmaa.2015.05.063
|
17 |
Wen Z Y . Moran sets and Moran classes. Chinese Science Bulletin, 2001, 46 (16): 1849- 1856
|
18 |
Zhu S . The quantization for self-conformal measures with respect to the geometric mean error. Nonlinearity, 2010, 23 (11): 2849- 2866
doi: 10.1088/0951-7715/23/11/007
|
19 |
Zhu S . Asymptotic uniformity of the quantization error for self-similar measures. Math Z, 2011, 267 (3/4): 915- 929
|
20 |
Zhu S . A characterization of the optimal sets for self-similar measures with respect to the geometric mean error. Acta Math Hung, 2013, 138: 201- 225
doi: 10.1007/s10474-012-0293-5
|
21 |
Zhu S . On the Asymptotic uniformity of the quantization error for Moran measures on ${\Bbb R} ^{1}$. Acta Math Sinica, 2019, 35 (9): 1520- 1540
doi: 10.1007/s10114-019-8117-y
|
22 |
Zhu S , Zhou Y M . On the optimal Voronoi partitins for Ahlfors-David measures with respect to the geometric mean error. J Math Anal Appl, 2021, 498 (2): 1- 20
|