Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (6): 1864-1870.
Previous Articles Next Articles
Received:
2021-01-11
Online:
2021-12-26
Published:
2021-12-02
CLC Number:
Yu Yang. Global Attractivity of a Nonlocal Delayed and Diffusive SVIR Model[J].Acta mathematica scientia,Series A, 2021, 41(6): 1864-1870.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Gao J G , Zhang C , Wang J L . Analysis of a reaction-diffusion SVIR model with a fixed latent period and non-local infections. Appl Anal, 2020,
doi: 10.1080/00036811.2020.1750601 |
2 |
Thieme H R , Zhao X Q . A non-local delayed and diffusive predator-prey model. Nonlinear Anal RWA, 2001, 2, 145- 160
doi: 10.1016/S0362-546X(00)00112-7 |
3 |
Lou Y J , Zhao X Q . A reaction-diffusion malaria model with incubation period in the vector population. J Math Biol, 2011, 62, 543- 568
doi: 10.1007/s00285-010-0346-8 |
4 | Xu Z T , Zhao X Q . A vector-bias malaria model with incubation period and diffusion. Discrete Contin Dyn Syst Ser B, 2012, 17 (7): 2615- 2634 |
5 | Xu Z T , Zhao Y Y . A diffusive dengue disease model with nonlocal delayed transmission. Appl Math Comput, 2015, 270, 808- 829 |
6 |
Zhang L , Wang S M . A time-periodic and reaction-diffusion Dengue fever model with extrinsic incubation period and crowding effects. Nonlinear Anal RWA, 2020, 51, 102988
doi: 10.1016/j.nonrwa.2019.102988 |
7 |
Li F X , Zhao X Q . Global dynamics of a nonlocal periodic reaction-diffusion model of bluetongue disease. J Differ Equa, 2021, 272, 127- 163
doi: 10.1016/j.jde.2020.09.019 |
8 |
McCluskey C C , Yang Y . Global stability of a diffusive virus dynamics model with general incidence function and time delay. Nonlinear Anal RWA, 2015, 25, 64- 78
doi: 10.1016/j.nonrwa.2015.03.002 |
9 |
Shu H Y , Chen Y M , Wang L . Impacts of the cell-free and cell-to-cell infection modes on viral dynamics. J Dyn Differ Equa, 2018, 30, 1817- 1836
doi: 10.1007/s10884-017-9622-2 |
10 |
Yang Y , Zou L , Ruan S G . Global dynamics of a delayed within-host viral infection model with both virus-to-cell and cell-to-cell transmissions. Math Biosci, 2015, 270, 183- 191
doi: 10.1016/j.mbs.2015.05.001 |
11 |
He G F , Wang J B , Huang G . Wave propagation of a diffusive epidemic model with latency and vaccination. Appl Anal, 2021, 100, 1972- 1995
doi: 10.1080/00036811.2019.1672868 |
12 | Wang L W , Liu Z J , Zhang X A . Global dynamics of an SVEIR epidemic model with distributed delay and nonlinear incidence. Appl Math Comput, 2016, 284, 47- 65 |
13 |
Xu R . Global stability of a delayed epidemic model with latent period and vaccination strategy. Appl Math Model, 2012, 36 (11): 5293- 5300
doi: 10.1016/j.apm.2011.12.037 |
14 |
张鑫喆, 贺国峰, 黄刚. 一类具有接种和潜伏期的传染病模型及动力学分析. 数学物理学报, 2019, 39A (5): 1247- 1259
doi: 10.3969/j.issn.1003-3998.2019.05.025 |
Zhang X Z , He G F , Huang G . Dynamical properties of a delayed epidemic model with vaccination and saturation incidence. Acta Math Sci, 2019, 39A (5): 1247- 1259
doi: 10.3969/j.issn.1003-3998.2019.05.025 |
|
15 |
Liu X N , Takeuchi Y , Iwami S . SVIR epidemic models with vaccination strategies. J Theor Biol, 2008, 253 (1): 1- 11
doi: 10.1016/j.jtbi.2007.10.014 |
16 |
Xu Z T , Xu Y Q , Huang Y H . Stability and traveling waves of a vaccination model with nonlinear incidence. Comput Math Appl, 2018, 75 (2): 561- 581
doi: 10.1016/j.camwa.2017.09.042 |
17 |
Guo Z M , Wang F B , Zou X F . Threshold dynamics of an infective disease model with a fixed latent period and non-local infections. J Math Biol, 2012, 65, 1387- 1410
doi: 10.1007/s00285-011-0500-y |
18 |
Zhang L , Wang Z C , Zhao X Q . Threshold dynamics of a time periodic reaction-diffusion epidemic model with latent period. J Differ Equa, 2015, 258, 3011- 3036
doi: 10.1016/j.jde.2014.12.032 |
[1] | Lixiang Feng,Defen Wang. Global Stability of an Epidemic Model with Quarantine and Incomplete Treatment [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1235-1248. |
[2] | Xinzhe Zhang,Guofeng He,Gang Huang. Dynamical Properties of a Delayed Epidemic Model with Vaccination and Saturation Incidence [J]. Acta mathematica scientia,Series A, 2019, 39(5): 1247-1259. |
[3] | Fu Jinbo, Chen Lansun. Positive Periodic Solution of Multiple Species Comptition System with Ecological Environment and Feedback Controls [J]. Acta mathematica scientia,Series A, 2017, 37(3): 553-561. |
[4] | LI Xiang, LI Zhi-Xiang. Strong Periodic Solution for a Class of Non-local PDE Models for Population Dynamics with State-selective Delays [J]. Acta mathematica scientia,Series A, 2011, 31(3): 709-719. |
[5] | XU Yong-Chun, HE Xin-Feng, HOU Zhi-Bin, HE Zhen. Generalized Projection Methods for Noor Variational Inequalities in Banach Spaces [J]. Acta mathematica scientia,Series A, 2010, 30(3): 808-817. |
[6] | ZHAO Li-Qin. Necessary and Sufficient Conditions for the Global Weak Attractivity and Global Attractivity of a Class of Nonlinear Differential Equations [J]. Acta mathematica scientia,Series A, 2009, 29(3): 529-537. |
[7] |
Chen Fulai ;Wen Xianzhang.
Differential Equation [J]. Acta mathematica scientia,Series A, 2006, 26(2): 287-296. |
[8] | HE Hai-Feng. Global Attractivity and Oscillation in a Periodic“Food Limited&rdquo|Population Model with Delay [J]. Acta mathematica scientia,Series A, 2005, 25(2): 158-165. |
[9] | WEN Xian-Zhang, WANG Zhi-Cheng. Attractivity of Positive Periodic Solution of Multispecies Ecological Delay System [J]. Acta mathematica scientia,Series A, 2004, 4(6): 641-653. |
[10] | ZHANG Qiang, MA Run-Nian. Delay dependent Stability of Cellular Neural Networks with Delays [J]. Acta mathematica scientia,Series A, 2004, 4(6): 694-698. |
[11] | DIAO Hong-Yong, WANGGuang-Lan. Existence and Global Attractivity of Almost Periodic Solutions for Hopfield Neural |Networks |with Variable Delay [J]. Acta mathematica scientia,Series A, 2004, 4(6): 723-729. |
[12] | Li Yongkun. Global Attractivity in a Periodic Delay-Logistic Equation [J]. Acta mathematica scientia,Series A, 1997, 17(S1): 66-69. |
[13] | Hou Zhenting, Luo Jiaowan, Yu Jianshe. GLOBAL ATTRACTIVITY FOR A MULTIPLICATIVE DELAY DIFFERENTIAL POPULATION MODEL [J]. Acta mathematica scientia,Series A, 1997, 17(S1): 175-183. |
|