Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (6): 1838-1852.
Previous Articles Next Articles
Zhiyu Zhang1,*(),Cheng Zhao2,Yuyu Li1
Received:
2020-12-12
Online:
2021-12-26
Published:
2021-12-02
Contact:
Zhiyu Zhang
E-mail:zhangzhiyu008@aliyun.com
Supported by:
CLC Number:
Zhiyu Zhang,Cheng Zhao,Yuyu Li. Oscillation of Second Order Delay Dynamic Equations with Superlinear Neutral Terms on Time Scales[J].Acta mathematica scientia,Series A, 2021, 41(6): 1838-1852.
1 | Hilger S . Analysis on measure chains–a unified approach to continuous and discrete calculus. Results in Mathematics, 1990, 18 (1/2): 18- 56 |
2 | Bohner M , Georgiev S G . Multivariable Dynamic Calculus on Time Scales. Switzerland: Springer, 2016 |
3 | Bohner M , Peterson A . Advances in Dynamic Equations on Time Scales. Boston: Birkhauser, 2003 |
4 | Agarwal R , O'Regan D , Saker S . Dynamic Inequalities on Time Scales. Switzerland: Springer, 2014 |
5 |
Saker S H . Oscillation of second-order nonlinear neutral delay dynamic equations on time scales. Journal of Computational and Applied Mathematics, 2006, 187 (2): 123- 141
doi: 10.1016/j.cam.2005.03.039 |
6 |
Wu H W , Zhuang R K , Mathsen R M . Oscillation criteria for second-order nonlinear neutral variable delay dynamic equations. Applied Mathematics and Computation, 2006, 178 (2): 321- 331
doi: 10.1016/j.amc.2005.11.049 |
7 |
Saker S H , Agarwal R , O'Regan D . Oscillation results for second-order nonlinear neutral delay dynamic equations on time scales. Applicable Analysis, 2007, 86 (1): 1- 17
doi: 10.1081/00036810601091630 |
8 | Han Z , Li T , Sun S , et al. Oscillation for second-order nonlinear delay dynamic equations on time scales. Advances in Difference Equations, 2009, 2009, 1- 13 |
9 |
Zhang S Y , Wang Q R . Oscillation of second-order nonlinear neutral dynamic equations on time scales. Applied Mathematics and Computation, 2010, 216 (10): 2837- 2848
doi: 10.1016/j.amc.2010.03.134 |
10 | Li T , Han Z , Zhang C , et al. Oscillation criteria for second-order superlinear neutral differential equations. Abstract and Applied Analysis, 2011, 2011, 367541 |
11 | Li T , Agarwal R , Bohner M . Some oscillation results for second-order neutral differential equations. J Indian Math Soc (N S), 2012, 79 (1): 97- 106 |
12 |
Li T , Rogovchenko Yu V . Oscillation criteria for second-order superlinear Emden-Fowler neutral differential equations. Monatsh Math, 2017, 184 (3): 489- 500
doi: 10.1007/s00605-017-1039-9 |
13 | Bohner M , Hassan T S , Li T . Fite-Hille-Wintner-type oscillation criteria for second-order half-linear dynamic equations with deviating arguments. Indian Math(N S), 2018, 29 (2): 548- 560 |
14 | Li T, Pintus N, Viglialoro G. Properties of solutions to porous medium problems with different sources and boundary conditions. Z Angew Math Phys, 2019, 70(3), Article number: 86 |
15 |
Li T , Rogovchenko Yu V . On the asymptotic behavior of solutions to a class of third-order nonlinear neutral differential equations. Applied Mathematics Letters, 2020, 105, 106293
doi: 10.1016/j.aml.2020.106293 |
16 | Agarwal R , Bohner M , Li T , et al. Oscillation of second-order differential equations with a sublinear neutral term. Carpathian Journal of Mathematics, 2014, 2014, 1- 6 |
17 | Tamilvanan S , Thandapani E , Dzurina J . Oscillation of second order nonlinear differential equation with sublinear neutral term. Differ Equ Appl, 2017, 9 (1): 29- 35 |
18 |
Grace S R , Graef J R . Oscillatory behavior of second order nonlinear differential equations with a sublinear neutral term. Mathematical Modelling and Analysis, 2018, 23 (2): 217- 226
doi: 10.3846/mma.2018.014 |
19 |
Dzurina J , Grace S R , Jadlovska I , et al. Oscillation criteria for second-order Emden-Fowler delay differential equations with a sublinear neutral term. Math Nachr, 2020, 293 (5): 910- 922
doi: 10.1002/mana.201800196 |
20 |
Tamilvanan S , Thandapani E , Grace S R . Oscillation theorems for second-order non-linear differential equation with a non-linear neutral term. International Journal of Dynamical Systems and Differential Equations, 2017, 7 (4): 316- 327
doi: 10.1504/IJDSDE.2017.087501 |
21 |
仉志余, 俞元洪, 李淑萍, 等. 二阶非线性中立型时滞微分方程的振动性. 数学物理学报, 2019, 39A (4): 797- 811
doi: 10.3969/j.issn.1003-3998.2019.04.009 |
Zhang Z Y , Yu Y H , Li S P , et al. Oscillation of second order nonlinear Differential equations with neutral delay. Acta Math Sci, 2019, 39A (4): 797- 811
doi: 10.3969/j.issn.1003-3998.2019.04.009 |
|
22 | 仉志余, 宋菲菲, 俞元洪. 显含阻尼项的二阶非线性中立型Emden-Fowler微分方程的振动性和渐近性. 应用数学, 2020, 33 (3): 770- 781 |
Zhang Z Y , Song F F , Yu Y H . Oscillation and asymptotic behavior for second order nonlinear neutral Emden-Fowler dfferential equations with explicit damping. Mathematica Applicata, 2020, 33 (3): 770- 781 | |
23 |
仉志余, 宋菲菲, 李同兴, 等. 带阻尼项的二阶非线性中立型Emden-Fowler微分方程的振动准则. 数学物理学报, 2020, 40A (4): 934- 946
doi: 10.3969/j.issn.1003-3998.2020.04.011 |
Zhang Z Y , Song F F , Li T , et al. Oscillation criteria of second nonlinear neutral Emden-Fowler differential equation with damping. Acta Math Sci, 2020, 40A (4): 934- 946
doi: 10.3969/j.issn.1003-3998.2020.04.011 |
|
24 |
仉志余. 具次线性中立项的二阶广义Emden-Fowler时滞微分方程的振动准则. 数学物理学报, 2021, 41A (3): 811- 826
doi: 10.3969/j.issn.1003-3998.2021.03.018 |
Zhang Z Y . Oscillation criteria of second-order generalized Emden-Fowler delay differential equations with a sub-linear term. Acta Math Sci, 2021, 41A (3): 811- 826
doi: 10.3969/j.issn.1003-3998.2021.03.018 |
|
25 | Bohner M , Sudha B , Tangavelu K , et al. Oscillation criteria for second-order differential equations with superlinear neutral term. Nonlinear Studies, 2019, 26 (2): 425- 434 |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 117
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 88
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|