Acta mathematica scientia,Series A ›› 2021, Vol. 41 ›› Issue (6): 1684-1704.
Previous Articles Next Articles
Zaiyun Zhang1,*(),Zhenhai Liu2,Youjun Deng3
Received:
2020-08-06
Online:
2021-12-26
Published:
2021-12-02
Contact:
Zaiyun Zhang
E-mail:1226@126.com
Supported by:
CLC Number:
Zaiyun Zhang,Zhenhai Liu,Youjun Deng. Global Existence and General Decay for a Nonlinear Viscoelastic Equation with Time-Varying Delay and Velocity-Dependent Material Density[J].Acta mathematica scientia,Series A, 2021, 41(6): 1684-1704.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1 |
Kirane M , Said-Houari B . Existence and aymptotic stability of a viscoelastic wave equation with a delay. Z Angew Math Phys, 2011, 62, 1065- 1082
doi: 10.1007/s00033-011-0145-0 |
2 |
Cavalcanti M M , Domingos Cavalcanti V , Ferreira J . Existence and uniform decay for nonlinear viscoelastic equation with strong damping. Math Methods Appl Sci, 2001, 24, 1043- 1053
doi: 10.1002/mma.250 |
3 |
Zhang Z Y , Liu Z H , Gan X Y . Global existence and general decay for a nonlinear viscoelastic equation with nonlinear localized damping and velocity-dependent material density. Appl Anal, 2013, 92, 2021- 2048
doi: 10.1080/00036811.2012.716509 |
4 | Zhang Z Y , Miao X J . Global existence and uniform decay for wave equation with dissipative term and boundary damping. Computers & Mathematics with Applications, 2010, 59, 1003- 1018 |
5 |
Zhang Z Y , Liu Z H , Miao X J , Chen Y Z . Global existence and uniform stabilization of a generalized dissipative Klein-Gordon equation type with boundary damping. J Math Phys, 2011, 52, 023502
doi: 10.1063/1.3544046 |
6 |
Zhang Z Y , Liu Z H , Miao X J . Estimate on the dimension of global attractor for nonlinear dissipative Kirchhoff equation. Acta Appl Math, 2010, 110, 271- 282
doi: 10.1007/s10440-008-9405-1 |
7 |
Cavalcanti M M , Domingos Cavalcanti V , Fukuoka R , Soriano J A . Uniform stabilization of the wave equation on compact manifolds and locally distributed damping-a sharp result. J Math Anal Appl, 2009, 351, 661- 674
doi: 10.1016/j.jmaa.2008.11.008 |
8 |
Cavalcanti M M , Domingos Cavalcanti V , Fukuoka R , Soriano J A . Asymptotic stability of the wave equation on compact surfaces and locally distributed damping: a sharp result. Arch Ration Mech Anal, 2010, 197, 925- 964
doi: 10.1007/s00205-009-0284-z |
9 | Cavalcanti M M , Domingos Cavalcanti V , Soriano J A . Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping. Elec J Diff Equa, 2002, 44, 1- 14 |
10 | Berrimi S , Messaoudi S A . Exponential decay of solutions to a viscoelastic equation with nonlinear localized damping. Elec J Diff Equa, 2004, 88, 1- 10 |
11 |
Cavalcanti M M , Oquendo H P . Frictional verus viscoelastic damping in a semilinear wave equation. SIAM J Control Optim, 2003, 42, 1310- 1324
doi: 10.1137/S0363012902408010 |
12 |
Zhang Z Y , Liu Z H , Miao X J , Chen Y Z . A note on decay properties for the solutions of a class of partial differential equation with memory. J Appl Math Comput, 2011, 37, 85- 102
doi: 10.1007/s12190-010-0422-7 |
13 |
Liu W J . General decay rate estimate for a viscoelastic equation with weakly nonlinear time-dependent dissipation and source terms. J Math Phys, 2009, 50, 113506
doi: 10.1063/1.3254323 |
14 |
Liu W J . Uniform decay of solutions for a quasilinear system of viscoelastic equations. Nonlinear Anal TMA, 2009, 71, 2257- 2267
doi: 10.1016/j.na.2009.01.060 |
15 |
Liu W J . General decay and blow-up of solution for a quasilinear viscoelastic problem with nonlinear source. Nonlinear Anal TMA, 2010, 73, 1890- 1904
doi: 10.1016/j.na.2010.05.023 |
16 | Liu W J . General decay of solutions to a viscoelastic equation with nonlinear localized damping. Ann Acad Sci Fenn Math, 2009, 34, 291- 302 |
17 | Liu W J . General decay of solutions of a nonlinear system of viscoelastic equations. Acta Appl Math, 2010, 110, 53- 165 |
18 |
Liu W J . Exponential or polynomial decay of solutions to a viscoelastic equation with nonlinear localized damping. J Appl Math Comput, 2010, 32, 59- 68
doi: 10.1007/s12190-009-0232-y |
19 |
Han X S , Wang M X . Global existence and uniform decay for a nonlinear viscoelastic equation with damping. Nonlinear Anal TMA, 2009, 70, 3090- 3098
doi: 10.1016/j.na.2008.04.011 |
20 |
Han X S , Wang M X . General decay of energy for a viscoelastic equation with nonlinear damping. Journal of the Franklin Institute, 2010, 347, 806- 817
doi: 10.1016/j.jfranklin.2010.02.010 |
21 |
Han X S , Wang M X . Global existence and asymptotic behavior for a couple hyperbolic system with localized damping. Nonlinear Anal TMA, 2010, 72, 965- 986
doi: 10.1016/j.na.2009.07.032 |
22 |
Han X S , Wang M X . Energy decay rate for a couple hyperbolic system with nonlinear damping. Nonlinear Anal TMA, 2009, 70, 3264- 3272
doi: 10.1016/j.na.2008.04.029 |
23 |
Messaoudi S A , Tatar N E . Global existence and uniform stability of solutions for a quasilinear viscoelastic problem. Math Methods Appl Sci, 2007, 30, 665- 680
doi: 10.1002/mma.804 |
24 | Cavalcanti M M , Domingos Cavalcanti V , Fukuoka R , et al. Existence and uniform decay rates for viscoelastic problems with nonlinear boundary damping. Differential and Integral Equations, 2001, 14, 85- 116 |
25 |
Messaoudi S A , Tatar N E . Exponential or polynomial decay for a quasilinear viscoelastic equation. Nonlinear Anal, 2008, 68, 785- 793
doi: 10.1016/j.na.2006.11.036 |
26 |
Tatar N E . Exponential decay for a viscoelastic problem with a singular kenerl. Z Angew Math Phys, 2009, 60, 640- 650
doi: 10.1007/s00033-008-8030-1 |
27 |
Berrimi S , Messaoudi S A . Existence and decay of solutions of a viscoelastic equation with a nonlinear source. Nonlinear Anal, 2006, 64, 2314- 2331
doi: 10.1016/j.na.2005.08.015 |
28 |
Messaoudi S A . General decay of the solution energy in a viscoelastic equation with a nonlinear source. Nonlinear Anal, 2008, 69, 2589- 2598
doi: 10.1016/j.na.2007.08.035 |
29 |
Han X S , Wang M X . General decay of energy for a viscoelastic equation with nonlinear damping. Math Methods Appl Sci, 2009, 32, 346- 358
doi: 10.1002/mma.1041 |
30 | Liu W J . Asmptotic behavior of solutions of the time-delayed Burger's equation. Discrete Contin Dyn Syst Ser B, 2002, 2, 47- 56 |
31 |
Shang Y F , Xu G Q , Chen Y L . Stability analysis of Euler-Bernoulli beam with input delay in the boundary control. Asian J Control, 2012, 14, 186- 196
doi: 10.1002/asjc.279 |
32 |
Datko R . Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks. SIAM J Control Optim, 1988, 26, 697- 713
doi: 10.1137/0326040 |
33 |
Datko R , Lagnese J , Polis M P . An example on the effect of time delays in boundary feedback stabilization of wave equation. SIAM J Control Optim, 1986, 24, 152- 156
doi: 10.1137/0324007 |
34 |
Nicaise S , Pignotti C . Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks. SIAM J Control Optim, 2006, 45, 1561- 1585
doi: 10.1137/060648891 |
35 | Nicaise S , Pignotti C . Stabilization of the wave equation with boundary or internal distributed delay. Differential and Integral Equations, 2008, 21, 935- 958 |
36 |
Xu G Q , Yung S P , Li L K . Stabilization of the wave system with input delay in the boundary control. ESIAM: Control Optim Calc Var, 2006, 12, 770- 785
doi: 10.1051/cocv:2006021 |
37 |
Ait Benhassi E M , Ammari K , Boulite S , Maniar L . Feedback stabilization of a class of evolution equation with delay. J Evol Equa, 2009, 9, 103- 121
doi: 10.1007/s00028-009-0004-z |
38 | Nicaise S , Pignotti C , Valein J . Exponential stability of the wave equation with boundary time-varying delay. Discrete Contin Dyn Syst Ser S, 2011, 4, 693- 722 |
39 |
Caraballo T , Real J , Shaiklet L . Method of Lyapunov functionals construction in stability of delay evolution equations. J Math Anal Appl, 2007, 334, 1130- 1145
doi: 10.1016/j.jmaa.2007.01.038 |
40 |
Zhang Z Y , Liu Z H , Miao X J , Chen Y Z . Stability analysis of heat flow with boundary time-varying delay effect. Nonlinear Anal, 2010, 73, 1878- 1889
doi: 10.1016/j.na.2010.05.022 |
41 | Nicaise S , Pignotti C . Interior feedback stabilization of wave equations with time dependent delay. Elec J Diff Equa, 2011, 41, 1- 20 |
42 | Nicaise S , Pignotti C , Fridman E . Stability of the heat and the wave equations with boundary time-varying delays. Disc Conti Dyna Syst, 2009, 2, 559- 581 |
43 | Nicaise S , Valein J . Stabilization of the wave equation on 1-d networks with a delay term in thenodal feedbacks. Networks & Heterogeneous Media, 2007, 2, 425- 479 |
44 |
Fridman E , Nicaise S , Valein J . Stabilization of seconder order evolution equations with inbounded feedback with time-dependent delay. SIAM J Control Optim, 2010, 48, 5028- 5052
doi: 10.1137/090762105 |
45 |
Nicaise S , Valein J . Stabilization of seconder order evolution equations with inbounded feedback with delay. ESIAM: Control Optim Calc Var, 2010, 16, 420- 456
doi: 10.1051/cocv/2009007 |
46 | Lions J L . Quelques Méthodes de Résolution des Problémes aux Limites non Linéaires. Paris: Dunod, 1969 |
47 | Zheng S M . Nonlinear Evolution Equations. Boca Raton: CRC Press, 2004 |
48 |
Liu W J . General decay of the solution for a viscoelastic wave equation with a time-varying delay term in the internal feedback. J Math Phys, 2013, 54, 043504
doi: 10.1063/1.4799929 |
49 |
Dai Q Y , Yang Z F . Global existence and exponential decay of the solution for a viscoelastic wave equation with a delay. Z Angew Math Phys, 2014, 65, 885- 903
doi: 10.1007/s00033-013-0365-6 |
50 | Zhang Z Y, Huang J H, Liu Z H, Sun M B. Boundary stabilization of a nonlinear viscoelastic equation with interior time-varying delay and nonlinear dissipative boundary feedback. Abstract and Applied Analysis, 2014, Article ID: 102594 |
51 |
Cavalcanti M M , Domingos Cavalcanti V , Lasiecka I , Webler C M . Intrinsic decay rates for the energy of a nonlinear viscoelastic equation modeling the vibrations of thin rods with variable density. Adv Nonlinear Anal, 2017, 6, 121- 145
doi: 10.1515/anona-2016-0027 |
52 |
Messaoudi S A , Said-Houari B . Energy decay in a transmission problem in thermoelasticity of type Ⅲ. IMA J Appl Math, 2009, 74, 344- 360
doi: 10.1093/imamat/hxp020 |
53 |
Messaoudi S A , Bonfoh A , Mukiawa S E , Enyi C D . The global attractor for a suspension bridge with memory and partially hinged boundary conditions. Z Angew Math Mech, 2017, 97, 159- 172
doi: 10.1002/zamm.201600034 |
54 |
Yang Z F . Existence and energy decay of solutions for the Euler-Bernoulli viscoelastic equation with a delay. Z Angew Math Phys, 2015, 66, 727- 745
doi: 10.1007/s00033-014-0429-2 |
|